995 resultados para CARRIER DENSITY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current-voltage (I-V) and impedance measurements were carried out in doped poly(3-methylthiophene) devices by varying the carrier density. As the carrier concentration reduces the I-V characteristics indicate that the conduction mechanism is limited by metal-polymer interface, as also observed in impedance data. The temperature dependence of I-V in moderately doped samples shows a trap-controlled space-charge-limited conduction (SCLC); whereas in lightly doped devices injection-limited conduction is observed at lower bias and SCLC at higher voltages. The carrier density-dependent quasi-Fermi level adjustment and trap-limited transport could explain this variation in conduction mechanism. Capacitance measurements at lower frequencies and higher bias voltages show a sign change in values due to the significant variations in the relaxation behaviour for lightly and moderately doped samples. The electrical hysteresis increases as carrier density is reduced due to the time scales involved in the de-trapping of carriers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polypyrrole (PPy) has been synthesized electrochemically on platinum substrate by varying synthesis temperature and dopant concentration. The charge transport in PPy has been investigated as a function of temperature for both in-plane and out-of-plane geometry in a wide temperature range of 5K-300 K. The charge transport showed strong anisotropy and various mechanisms were used to explain the transport. The conductivity ratio, sigma(r) = sigma(300 K)/sigma(5 K) is calculated for each sample to quantify the relative disorder. At all the temperatures, the conductivity values for in-plane transport are found to be more for PPy synthesized at lower temperature, while the behavior is found to be different for out-of-plane transport. The carrier density is found to play a crucial role in case of in-plane transport. An effort has been made to correlate charge transport to morphology by analyzing temperature and frequency dependence of conductivity. Charge transport in lateral direction is found to be dominated by hopping whereas tunneling mechanisms are dominated in vertical direction. Parameters such as density of states at the Fermi level N(E-F)], average hopping distance (R), and average hopping energy (W) have been estimated for each samples in both geometry. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4775405]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The relationship between charge carrier lifetime and mobility in a bulk heterojunction based organic solar cell, utilizing diketopyrrolopyrole- naphthalene co-polymer and PC71BM in the photoactive blend layer, is investigated using the photoinduced charge extraction by linearly increasing voltage technique. Light intensity, delay time, and temperature dependent experiments are used to quantify the charge carrier mobility and density as well as the temperature dependence of both. From the saturation of photoinduced current at high laser intensities, it is shown that Langevin-type bimolecular recombination is present in the studied system. The charge carrier lifetime, especially in Langevin systems, is discussed to be an ambiguous and unreliable parameter to determine the performance of organic solar cells, because of the dependence of charge carrier lifetime on charge carrier density, mobility, and type of recombination. It is revealed that the relation between charge mobility (μ) and lifetime (τ) is inversely proportional, where the μτ product is independent of temperature. The results indicate that in photovoltaic systems with Langevin type bimolecular recombination, the strategies to increase the charge lifetime might not be beneficial because of an accompanying reduction in charge carrier mobility. Instead, the focus on non-Langevin mechanisms of recombination is crucial, because this allows an increase in the charge extraction rate by improving the carrier lifetime, density, and mobility simultaneously. © 2013 AIP Publishing LLC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conducting and semiconducting polymers are important materials in the development of printed, flexible, large-area electronics such as flat-panel displays and photovoltaic cells. There has been rapid progress in developing conjugated polymers with high transport mobility required for high-performance field-effect transistors (FETs), beginning(1) with mobilities around 10(-4) cm(2) V-1 s(-1) to a recent report(2) of 1 cm(2) V-1 s(-1) for poly(2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b] thiophene) (PBTTT). Here, the electrical properties of PBTTT are studied at high charge densities both as the semiconductor layer in FETs and in electrochemically doped films to determine the transport mechanism. We show that data obtained using a wide range of parameters (temperature, gate-induced carrier density, source-drain voltage and doping level) scale onto the universal curve predicted for transport in the Luttinger liquid description of the one-dimensional `metal'.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report femtosecond time-resolved reflectivity measurements of coherent phonons in tellurium performed over a wide range of temperatures (3-296 K) and pump-laser intensities. A totally symmetric A(1) coherent phonon at 3.6 THz responsible for the oscillations in the reflectivity data is observed to be strongly positively chirped (i.e., phonon time period decreases at longer pump-probe delay times) with increasing photoexcited carrier density, more so at lower temperatures. We show that the temperature dependence of the coherent phonon frequency is anomalous (i.e, increasing with increasing temperature) at high photoexcited carrier density due to electron-phonon interaction. At the highest photoexcited carrier density of (1.4 x 10(21) cm(-3) and the sample temperature of 3 K, the lattice displacement of the coherent phonon mode is estimated to be as high as similar to 0.24 angstrom. Numerical simulations based on coupled effects of optical absorption and carrier diffusion reveal that the diffusion of carriers dominates the nonoscillatory electronic part of the time-resolved reflectivity. Finally, using the pump-probe experiments at low carrier density of 6 x 10(18) cm(-3), we separate the phonon anharmonicity to obtain the electron-phonon coupling contribution to the phonon frequency and linewidth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics of a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the relaxation dynamics of photogenerated carriers in silicon nanowires consisting of a crystalline core and a surrounding amorphous shell, using femtosecond time-resolved differential reflectivity and transmission spectroscopy at 3.15 eV and 1.57 eV photon energies. The complex behaviour of the differential transmission and reflectivity transients is the mixed contributions from the crystalline core and the amorphous silicon on the nanowire surface and the substrate where competing effects of state-filling and photoinduced absorption govern the carrier dynamics. Faster relaxation rates are observed on increasing the photogenerated carrier density. Independent experimental results on crystalline silicon-on-sapphire (SOS) help us in separating the contributions from the carrier dynamics in crystalline core and the amorphous regions in the nanowire samples. Further, single-beam z-scan nonlinear transmission experiments at 1.57 eV in both open- and close-aperture configurations yield two-photon absorption coefficient beta (similar to 3 cm/GW) and nonlinear refraction coefficient gamma (-2.5 x 10 (-aEuro parts per thousand 4) cm(2)/GW).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The femtosecond pump-probe technique was used to study the carrier dynamics of amorphous Ge2Sb2Te5 films. With carrier density at around 10(20)-10(21) cm(-3), carriers were excited within 1 ps and recovered to the initial state for less than 3 ns. On the picosecond time scale, the carrier relaxation consists of two components: a fast process within 5 ps and a slow process after 5 ps. The relaxation time of the fast component is a function of carrier density, which increases from 1.9 to 4.3 ps for the carrier density changing from 9.7x10(20) cm(-3) to 3.1x10(21) cm(-3). A possible interpretation of the relaxation processes is elucidated. In the first 5 ps the relaxation process is dominated by an intraband carrier relaxation and the carrier trapping. It is followed by a recombination process of trapped carriers at later delay time. (c) 2007 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reports on an extensive analysis of the electroluminescence characteristics of InGaN-based LEDs with color-coded structure, i.e., with a triple quantum well structure in which each quantum well has a different indium content. The analysis is based on combined electroluminescence measurements and two-dimensional simulations, carried out at different current and temperature levels. Results indicate that (i) the efficiency of each of the quantum wells strongly depends on device operating conditions (current and temperature); (ii) at low current and temperature levels, only the quantum well closer to the p-side has a significant emission; (iii) emission from the other quantum wells is favored at high current levels. The role of carrier injection, hole mobility, carrier density and non-radiative recombination in determining the relative intensity of the quantum wells is discussed in the text. © 2013 The Japan Society of Applied Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the dependence of the differential reflection on the structure parameters of quantum dot (QD) heterostructures in pump-probe reflection measurements by both numerical simulations based on the finite-difference time-domain technique and theoretical calculations based on the theory of dielectric films. It is revealed that the value and sign of the differential reflection strongly depend on the thickness of the cap layer and the QD layer. In addition, a comparison between the carrier dynamics in undoped and p-doped InAs/GaAs QDs is carried out by pump-probe reflection measurements. The carrier capture time from the GaAs barrier into the InAs wetting layer and that from the InAs wetting layer into the InAs QDs are extracted by appropriately fitting differential reflection spectra. Moreover, the dependence of the carrier dynamics on the injected carrier density is identified. A detailed analysis of the carrier dynamics in the undoped and p-doped QDs based on the differential reflection spectra is presented, and its difference with that derived from the time-resolved photoluminescence is discussed. (C) 2008 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A detailed model for semiconductor linear optical amplifiers (LOAs) with gain clamping by a vertical laser field is presented, which accounts the carrier and photon density distribution in the longitudinal direction as well as the facet reflectivity. The photon iterative method is used in the simulation with output amplified spontaneous emission spectrum in the wide band as iterative variables. The gain saturation behaviors and the noise figure are numerically simulated, and the variation of longitudinal carrier density with the input power is presented which is associated with the ON-OFF state of the vertical lasers. The results show that the LOA can have a gain spectrum clamped in a wide wavelength range and have almost the same value of noise figure as that of conventional semiconductor optical amplifiers (SOAs). Numerical results also show that an LOA can have a noise figure about 2 dB less than that of the SOA gain clamped by a distributed Bragg reflector laser.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Semiconductor optical amplifiers (SOAs) with n-type modulation-doped multiple quantum well structure have been investigated. The shortened carrier lifetime is derived from the PL spectrum and electrical modulation frequency response measurement. The carrier lifetime in semiconductor optical amplifiers with any n-type-2-modulated doping multiple quantum well structure is less than 60% of that in the undoped partner. The shortest measured carrier lifetime of 236 ps in the MD-MQW SOA with sheet carrier density of 3 x 10(12) cm(-2) was only 38% of that in the undoped MQW SOA, which can increase the wavelength conversion efficiency via four wave mixing by a factor of about 7 and switching speed via XGM and XPM applications by a factor of 2.63.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The optical and carrier transport properties of amorphous transparent zinc indium tin oxide (ZITO)(a-ZITO) thin films and the characteristics of the thin-film transistors TFTs were examined as a function of chemical composition. The as-deposited films were very conductive and showed clear free carrier absorption FCA . The analysis of the FCA gave the effective mass value of 0.53 me and a momentum relaxation time of 3.9 fs for an a-ZITO film with Zn:In:Sn = 0.35:0.35:0.3. TFTs with the as-deposited channels did not show current modulation due to the high carrier density in the channels. Thermal annealing at 300°C decreased the carrier density and TFTs fabricated with the annealed channels operated with positive threshold voltages VT when Zn contents were 25 atom % or larger. VT shifted to larger negative values, and subthreshold voltage swing increased with decreasing the Zn content, while large on–off current ratios 107–108 were kept for all the Zn contents. The field effect mobilities ranged from 12.4 to 3.4 cm2 V−1 s−1 for the TFTs with Zn contents varying from 5 to 48 atom %. The role of Zn content is also discussed in relation to the carrier transport properties and amorphous structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the effect of electric field enhancement on Pt/nanostructured ZnO Schottky diode based hydrogen sensors under reverse bias condition has been investigated. Current-voltage characteristics of these diodes have been studied at temperatures from 25 to 620 °C and their free carrier density concentration was estimated by exposing the sensors to hydrogen gas. The experimental results show a significantly lower breakdown voltage in reversed bias current-voltage characteristics than the conventional Schottky diodes and also greater lateral voltage shift in reverse bias operation than the forward bias. This can be ascribed to the increased localized electric fields emanating from the sharp edges and corners of the nanostructured morphologies. At 620 °C, voltage shifts of 114 and 325 mV for 0.06% and 1% hydrogen have been recorded from dynamic response under the reverse bias condition. © 2010 Elsevier B.V. All rights reserved.