999 resultados para CARDIOPULMONARY TREADMILL TEST
Resumo:
Introduction: One of the main goals for exereise testing in children is evaluation of exercise capacity. There are many testing protocols, but the Bruce treadmill protocol is widely used among pediatrie cardiology centers. Thirty years ago, Cuming et al. were the first to establish normal values for children from North America (Canada) aged 4 to 18 years old. No data was ever published for children from Western Europe. Our study aimed to assess the validity of the normal values from Cuming et al. for children from Western Europe in the 21 st century. Methods: It is a retrospective cohort study in a tertiary care children's hospital. 144 children referred to our institution but finally diagnosed as having a normal heart underwent exercise stress testing using the Bruce protocol between 1999 and 2006. Data from 59 girls and 85 boys aged 6 to 18 were reviewed. Mean endurance time (ET) for each age category and gender was compared with the mean normal values fram Cumming et al by an unpaired t-test. Results: Mean ET increases with age until 15 years old in girls and then decreases. Mean endurance time increases continuouslY'from 6 to 18 years old in boys. The increase is more pronounced in boys than girls. In our study, a significant higher mean ET was found for boys in age categories 10 to 12, 13 to 15 and 16 to 18. No significant difference was found in any other groups. Conclusions: Some normal values from Cuming et al. established in 1978 for ET with the Bruce protocol are probably not appropriate any more today for children from Western Europe. Our study showed that mean ET is higher for boys from 10 to 18 years old. Despite common beliefs, cardiovascular conditioning doesn't seem yet reduced in children from Western Europe. New data for Bruce treadmill exercise. testing for healthy children, 4 to 18 years old, living in Western Europe are required. .
Resumo:
Coronary artery disease (CAD) is a worldwide leading cause of death. The standard method for evaluating critical partial occlusions is coronary arteriography, a catheterization technique which is invasive, time consuming, and costly. There are noninvasive approaches for the early detection of CAD. The basis for the noninvasive diagnosis of CAD has been laid in a sequential analysis of the risk factors, and the results of the treadmill test and myocardial perfusion scintigraphy (MPS). Many investigators have demonstrated that the diagnostic applications of MPS are appropriate for patients who have an intermediate likelihood of disease. Although this information is useful, it is only partially utilized in clinical practice due to the difficulty to properly classify the patients. Since the seminal work of Lotfi Zadeh, fuzzy logic has been applied in numerous areas. In the present study, we proposed and tested a model to select patients for MPS based on fuzzy sets theory. A group of 1053 patients was used to develop the model and another group of 1045 patients was used to test it. Receiver operating characteristic curves were used to compare the performance of the fuzzy model against expert physician opinions, and showed that the performance of the fuzzy model was equal or superior to that of the physicians. Therefore, we conclude that the fuzzy model could be a useful tool to assist the general practitioner in the selection of patients for MPS.
Resumo:
Exaggerated blood pressure response (EBPR) during the exercise treadmill test (ETT) has been considered to be a risk factor for hypertension. The relationship of polymorphisms of the renin-angiotensin system gene with hypertension has not been established. Our objective was to evaluate whether EBPR during exercise is a clinical marker for hypertension. The study concerned a historical cohort of normotensive individuals. The exposed individuals were those who presented EBPR. At the end of the observation period (41.7 months = 3.5 years), the development of hypertension was analyzed within the two groups. Genetic polymorphisms and blood pressure behavior were assessed as independent variables, together with the classical risk factors for hypertension. The I/D gene polymorphism of the angiotensin-converting enzyme and M235T of angiotensinogen were ruled out as risk factors for hypertension. EBPR during ETT is not an independent influence on the chances of developing hypertension. No differences were observed between the hypertensive and normotensive individuals regarding gender (P = 0.655), skin color (P = 0.636), family history of hypertension (P = 0.225), diabetes mellitus (P = 0.285), or hypertriglyceridemia (P = 0.734). The risk of developing hypertension increased with increasing body mass index (BMI) and advancing age. The risk factors, which independently influenced the development of hypertension, were age and BMI. EBPR did not constitute an independent risk factor for hypertension and is probably a preclinical phase in the spectrum of normotension and hypertension.
Resumo:
This study aimed to analyze the agreement between measurements of unloaded oxygen uptake and peak oxygen uptake based on equations proposed by Wasserman and on real measurements directly obtained with the ergospirometry system. We performed an incremental cardiopulmonary exercise test (CPET), which was applied to two groups of sedentary male subjects: one apparently healthy group (HG, n=12) and the other had stable coronary artery disease (n=16). The mean age in the HG was 47±4 years and that in the coronary artery disease group (CG) was 57±8 years. Both groups performed CPET on a cycle ergometer with a ramp-type protocol at an intensity that was calculated according to the Wasserman equation. In the HG, there was no significant difference between measurements predicted by the formula and real measurements obtained in CPET in the unloaded condition. However, at peak effort, a significant difference was observed between oxygen uptake (V˙O2)peak(predicted)and V˙O2peak(real)(nonparametric Wilcoxon test). In the CG, there was a significant difference of 116.26 mL/min between the predicted values by the formula and the real values obtained in the unloaded condition. A significant difference in peak effort was found, where V˙O2peak(real)was 40% lower than V˙O2peak(predicted)(nonparametric Wilcoxon test). There was no agreement between the real and predicted measurements as analyzed by Lin’s coefficient or the Bland and Altman model. The Wasserman formula does not appear to be appropriate for prediction of functional capacity of volunteers. Therefore, this formula cannot precisely predict the increase in power in incremental CPET on a cycle ergometer.
Resumo:
Lumbar spinal stenosis is a frequent indication for spinal surgery. The predictive quality of treadmill testing and MRI for diagnostic verification is not yet clearly defined. Aim of the current study was to assess correlations between treadmill testing and MRI findings in the lumbar spine. Twenty-five patients with lumbar spinal stenosis were prospectively examined. Treadmill tests were performed and the area of the dural sac and neuroforamina was examined with MRI for the narrowest spinal segment. VAS and ODI were used for clinical assessment. The median age of the patients was 67 years. In the narrowest spinal segment the median area of the dural sac was 91 mm(2). The median ODI was 66 per cent. The median walking distance in the treadmill test was 70 m. The distance reached in the treadmill test correlated with the area of the dural sac (Spearman's rho = 0.53) and ODI (rho = -0.51), but not with the area of the neuroforamina and VAS. The distance reached in the treadmill test predicts the grade of stenosis in MRI but has a limited diagnostic importance for the level of clinical symptoms in lumbar spinal stenosis.
Resumo:
PURPOSE: Walking training is considered as the first treatment option for patients with peripheral arterial disease and intermittent claudication (IC). Walking exercise has been prescribed for these patients by relative intensity of peak oxygen uptake (VO(2)peak), ranging from 40% to 70% VO(2)peak, or pain threshold (PT). However, the relationship between these methods and anaerobic threshold (AT), which is considered one of the best metabolic markers for establishing training intensity, has not been analyzed. Thus, the aim of this study was to compare, in IC patients, the physiological responses at exercise intensities usually prescribed for training (% VO(2) peak or % PT) with the ones observed at AT. METHODS: Thirty-three IC patients performed maximal graded cardiopulmonary treadmill test to assess exercise tolerance. During the test, heart rate (HR), VO(2), and systolic blood pressure were measured and responses were analyzed at the following: 40% of VO(2)peak; 70% of VO(2)peak; AT; and PT. RESULTS: Heart rate and VO(2) at 40% and 70% of VO(2)peak were lower than those at AT (HR: -13 +/- 9% and -3 +/- 8%, P < .01, respectively; VO(2): -52 +/- 12% and -13 +/- 15%, P < .01, respectively). Conversely, HR and VO(2) at PT were slightly higher than those at AT (HR: +3 +/- 8%, P < .01; VO(2): + 6 +/- 15%, P = .04). None of the patients achieved the respiratory compensation point. CONCLUSION: Prescribing exercise for IC patients between 40% and 70% of VO(2)peak will induce a lower stimulus than that at AT, whereas prescribing exercise at PT will result in a stimulus above AT. Thus, prescribing exercise training for IC patients on the basis of PT will probably produce a greater metabolic stimulus, promoting better cardiovascular benefits.
Resumo:
Background: This study assessed the relationship between lower limb hemodynamics and metabolic parameters with walking tolerance in patients with intermittent claudication (IC). Patients and methods: Resting ankle-brachial index (ABI), baseline blood flow (BF), BF response to reactive hyperemia (BFRH), oxygen uptake (VO2), initial claudication distance (ICD) and total walking distance (TWD) were measured in 28 IC patients. Pearson and Spearman correlations were calculated. Results: ABI, baseline BF and BF response to RH did not correlate with ICD or TWD. VO2 at first ventilatory threshold and VO(2)peak were significantly and positively correlated with ICD (r = 0.41 and 0.54, respectively) and TWD (r = 0.65 and 0.71, respectively). Conclusions: VO(2)peak and VO2 at first ventilatory threshold, but not ABI, baseline BF and BFHR were associated with walking tolerance in IC patients. These results suggest that VO2 at first ventilatory threshold may be useful to evaluate walking tolerance and improvements in IC patients.
Resumo:
OBJECTIVE: The 6-minute walk test is an way of assessing exercise capacity and predicting survival in heart failure. The 6-minute walk test was suggested to be similar to that of daily activities. We investigated the effect of motivation during the 6-minute walk test in heart failure. METHODS: We studied 12 males, age 45±12 years, ejection fraction 23±7%, and functional class III. Patients underwent the following tests: maximal cardiopulmonary exercise test on the treadmill (max), cardiopulmonary 6-minute walk test with the walking rhythm maintained between relatively easy and slightly tiring (levels 11 and 13 on the Borg scale) (6EB), and cardiopulmonary 6-minute walk test using the usual recommendations (6RU). The 6EB and 6RU tests were performed on a treadmill with zero inclination and control of the velocity by the patient. RESULTS: The values obtained in the max, 6EB, and 6RU tests were, respectively, as follows: O2 consumption (ml.kg-1.min-1) 15.4±1.8, 9.8±1.9 (60±10%), and 13.3±2.2 (90±10%); heart rate (bpm) 142±12, 110±13 (77±9%), and 126±11 (89±7%); distance walked (m) 733±147, 332±66, and 470±48; and respiratory exchange ratio (R) 1.13±0.06, 0.9±0.06, and 1.06±0.12. Significant differences were observed in the values of the variables cited between the max and 6EB tests, the max and 6RU tests, and the 6EB and 6RU tests (p<0.05). CONCLUSION: Patients, who undergo the cardiopulmonary 6-minute walk test and are motivated to walk as much as they possibly can, usually walk almost to their maximum capacity, which may not correspond to that of their daily activities. The use of the Borg scale during the cardiopulmonary 6-minute walk test seems to better correspond to the metabolic demand of the usual activities in this group of patients.
Resumo:
Background: The 6-minute walk test (6MWT) is a well-known instrument for assessing the functional capacity of a variety of groups, including the obese. It is a simple, low-cost and easily applied method to objectively assess the level of exercise capacity. The aim of the present study was to study the functional capacity of a severely obese population before and after bariatric surgery. Methods: A total of 51 patients were studied. Of the 51 patients, 86.2% were women, and the mean age was 40.9 +/- 9.2 years. All 51 patients were evaluated preoperatively and 49 were evaluated 7-12 months postoperatively. The initial body mass index was 51.1 +/- 9.2 kg/m(2), and the final body mass index was 28.2 +/- 8.1 kg/m(2). All patients underwent Roux-en-Y gastric bypass. The 6MWT was performed in a hospital corridor, with patients attempting to cover as much distance as they could, walking back and forth for as long as possible within 6 minutes at their regular pace. The total distance, Borg Scale of perceived exhaustion, modified Borg dyspnea scale for shortness of breath, and physical complaints at the end of the test were recorded. In addition, the heart rate and respiratory frequency were assessed before and after the test. Results: The tolerance was good, and no injuries occurred at either evaluation. The patients` mean distance for the 6MWT was 381.9 +/- 49.3 m before surgery and 467.8 +/- 40.3 m after surgery (p < .0001). Similar results were observed for the other parameters assessed. Conclusion: The 6MWT provided useful information about the functional status of the obese patients undergoing bariatric surgery. A simple, safe, and powerful method to assess functional capacity of severely obese patients, the 6MWT is an objective test that might replace the conventional treadmill test for these types of patients. (Surg Obes Relat Dis 2009;5:540-543.) (C) 2009 American Society for Metabolic and Bariatric Surgery. All rights reserved.
Resumo:
INTRODUCTION: A growing body of evidence shows the prognostic value of oxygen uptake efficiency slope (OUES), a cardiopulmonary exercise test (CPET) parameter derived from the logarithmic relationship between O(2) consumption (VO(2)) and minute ventilation (VE) in patients with chronic heart failure (CHF). OBJECTIVE: To evaluate the prognostic value of a new CPET parameter - peak oxygen uptake efficiency (POUE) - and to compare it with OUES in patients with CHF. METHODS: We prospectively studied 206 consecutive patients with stable CHF due to dilated cardiomyopathy - 153 male, aged 53.3±13.0 years, 35.4% of ischemic etiology, left ventricular ejection fraction 27.7±8.0%, 81.1% in sinus rhythm, 97.1% receiving ACE-Is or ARBs, 78.2% beta-blockers and 60.2% spironolactone - who performed a first maximal symptom-limited treadmill CPET, using the modified Bruce protocol. In 33% of patients an cardioverter-defibrillator (ICD) or cardiac resynchronization therapy device (CRT-D) was implanted during follow-up. Peak VO(2), percentage of predicted peak VO(2), VE/VCO(2) slope, OUES and POUE were analyzed. OUES was calculated using the formula VO(2) (l/min) = OUES (log(10)VE) + b. POUE was calculated as pVO(2) (l/min) / log(10)peakVE (l/min). Correlation coefficients between the studied parameters were obtained. The prognosis of each variable adjusted for age was evaluated through Cox proportional hazard models and R2 percent (R2%) and V index (V6) were used as measures of the predictive accuracy of events of each of these variables. Receiver operating characteristic (ROC) curves from logistic regression models were used to determine the cut-offs for OUES and POUE. RESULTS: pVO(2): 20.5±5.9; percentage of predicted peak VO(2): 68.6±18.2; VE/VCO(2) slope: 30.6±8.3; OUES: 1.85±0.61; POUE: 0.88±0.27. During a mean follow-up of 33.1±14.8 months, 45 (21.8%) patients died, 10 (4.9%) underwent urgent heart transplantation and in three patients (1.5%) a left ventricular assist device was implanted. All variables proved to be independent predictors of this combined event; however, VE/VCO2 slope was most strongly associated with events (HR 11.14). In this population, POUE was associated with a higher risk of events than OUES (HR 9.61 vs. 7.01), and was also a better predictor of events (R2: 28.91 vs. 22.37). CONCLUSION: POUE was more strongly associated with death, urgent heart transplantation and implantation of a left ventricular assist device and proved to be a better predictor of events than OUES. These results suggest that this new parameter can increase the prognostic value of CPET in patients with CHF.
Resumo:
OBJECTIVE: The purpose of this study was to compare aerobic function [anaerobic threshold (%_VVO2-AT), respiratory compensation point (%_VVO2-RCP) and peak oxygen uptake (_VVO2peak)] between physically active patients with HIV/AIDS and matched controls and to examine associations between disease status, poor muscle strength, depression (as estimated by the profile of mood states questionnaire) and the aerobic performance of patients. METHODS: Progressive treadmill test data for %_VVO2-AT (V-slope method), RCP and (_VVO2peak) were compared between 39 male patients with HIV/AIDS (age 40.6¡1.4 years) and 28 male controls (age 44.4¡2.1 years) drawn from the same community and matched for habitual physical activity. Within-patient data were also examined in relation to CD4+ counts (nadir and current data) and peak isokinetic knee torque. RESULTS: AT, RCP and (_VVO2peak) values were generally similar for patients and controls.Within the patient sample, binary classification suggested that AT, RCP and (_VVO2peak) values were not associated with either the nadir or current CD4+ count, but treadmill test variables were positively associated with peak isokinetic knee torque. CONCLUSION: The aerobic performance of physically active patients with HIV/AIDS is generally well conserved. Nevertheless, poor muscle strength is observed in some HIV/AIDS patients, which is associated with lower anaerobic power and (_VVO2peak), suggesting the possibility of enhancing the aerobic performance of patients with weak muscles through appropriate muscle-strengthening activities.
Resumo:
This study aimed to describe and compare the ventilation behavior during an incremental test utilizing three mathematical models and to compare the feature of ventilation curve fitted by the best mathematical model between aerobically trained (TR) and untrained ( UT) men. Thirty five subjects underwent a treadmill test with 1 km.h(-1) increases every minute until exhaustion. Ventilation averages of 20 seconds were plotted against time and fitted by: bi-segmental regression model (2SRM); three-segmental regression model (3SRM); and growth exponential model (GEM). Residual sum of squares (RSS) and mean square error (MSE) were calculated for each model. The correlations between peak VO2 (VO2PEAK), peak speed (Speed(PEAK)), ventilatory threshold identified by the best model (VT2SRM) and the first derivative calculated for workloads below (moderate intensity) and above (heavy intensity) VT2SRM were calculated. The RSS and MSE for GEM were significantly higher (p < 0.01) than for 2SRM and 3SRM in pooled data and in UT, but no significant difference was observed among the mathematical models in TR. In the pooled data, the first derivative of moderate intensities showed significant negative correlations with VT2SRM (r = -0.58; p < 0.01) and Speed(PEAK) (r = -0.46; p < 0.05) while the first derivative of heavy intensities showed significant negative correlation with VT2SRM (r = -0.43; p < 0.05). In UT group the first derivative of moderate intensities showed significant negative correlations with VT2SRM (r = -0.65; p < 0.05) and Speed(PEAK) (r = -0.61; p < 0.05), while the first derivative of heavy intensities showed significant negative correlation with VT2SRM (r= -0.73; p < 0.01), Speed(PEAK) (r = -0.73; p < 0.01) and VO2PEAK (r = -0.61; p < 0.05) in TR group. The ventilation behavior during incremental treadmill test tends to show only one threshold. UT subjects showed a slower ventilation increase during moderate intensities while TR subjects showed a slower ventilation increase during heavy intensities.
Resumo:
The purpose of this study was to test the hypotheses that in obese children: 1) hypocaloric diet (D) improves both heart rate recovery at 1 min (Delta HRR1) cfter an exercise test, and cardiac autonomic nervous system activity (CANSA) in obese children; 2) Diet and exercise training (DET) combined leads to greater improvement in both Delta HRR1 after an exercise test and in CANSA, than D alone. Moreover, we examined the relationships among Delta HRR1, CANSA, cardiorespiratory fitness and anthropometric variables (AV) in obese children submitted to D and to DET. 33 obese children (10 +/- 0.2 years; body mass index (BMI) >95(th) percentile) were divided into 2 groups: D (n = 15; BMI = 31 +/- 1 kg/m(2)) and DET (n = 18; 29 +/- 1 kg/m(2)). All children performed a maximal cardiopulmonary exercise test on a treadmill. The Delta HRR1 was defined as the difference between heart rate at peak and at 1-min post-exercise. CANSA was assessed using power spectral analysis of heart rate variability at rest. The sympathovagal balance (low frequency and high frequency ratio, LF/HF) was measured. After interventions, all obese children showed reduced body weight (P < 0.05). The D group did not improve in terms of peak VO(2), Delta HRR1 or LF/HF ratio (P > 0.05). In contrast, the DET group showed increased peak VO(2) (P = 0.01) and improved Delta HRR1 (Delta HRR1 = 37.3 +/- 2.6; P = 0.01) and LF/HF ratio (P = 0.001). The DET group demonstrated significant relationships among Delta HRR1, peak VO(2) and CANSA (P < 0.05). In conclusion, DET, in contrast to D, promoted improved Delta HRR1 and CANSA in obese children, suggesting a positive influence of increased levels of cardiorespiratory fitness by exercise training on cardiac autonomic activity.
Resumo:
We analyzed the usefulness of a semi-tethered field running test (STR) and the relationships between indices of anaerobic power, anaerobic capacity and running performance in 9 trained male sprinters (22.2 +/- 2.9 yrs, 176 +/- 1 cm, 68.0 +/- 9.4 kg). STR involved an all out 120 m run attached to an apparatus that enabled power calculation from force and velocity measures. Subjects also carried out a cycloergometer Win-gate Anaerobic Test (WT), an all out 300 m run and had accessed their maximal accumulated oxygen deficit (MAOD) on a treadmill. Peak and mean powers attained in STR (1 720 +/- 221 and 1 391 +/- 201 W) were greater but significantly related (r=0.82; P<0.01) to those in the WT (808 +/- 130 and 603 +/- 87 W). In addition, power measures derived from the STR were stronger related to running performance compared to those from the WT (r=0.81-0.94 vs. 0.68-0.84; P<0.05). Relationships between MAOD and most power indices were only weak to moderate. These results support the usefulness of STR for specific power assessment in field running and suggest that anaerobic power and capacity are not related entities, irrespective of having been evaluated using similar or dissimilar exercise modes.