971 resultados para CARBON-DIOXIDE LASER
Resumo:
In this clinical study, we proposed to observe the efficacy of the treatment of squamous cell carcinoma of the tongue (SCCT) by carbon dioxide (CO2) laser surgery. Twelve patients with SCCT were treated with excisional surgery using the CO2 laser with a spot size of 0.8 mm, 10 W, power density of 2.5 W/cm(2) in continuous mode, and under constant vacuum removal of the plume. The post surgical clinical evaluations were done every day until the sutures were removed and then every 7 days up to 1 month postoperatively. Subjects were re-examined quarterly until the fifth year post surgery. After 5 yr of follow-up for all subjects, there was no recurrence of the SCCT at the involved sites. The functional and aesthetic results observed were excellent. It is concluded that CO2 laser ablation of SCCT is an extremely useful surgical technique that can provide a clean field and is capable of providing surgical results consistent with accepted principles of oncological surgery. (C) 2012 Laser Institute of America.
Resumo:
Erythroplakia is considered to represent a premalignant condition and is felt to be at high risk to progress to oral cancer development. When the lesion presents with red and white mucosal alterations concomitantly, the term erythroleukoplakia is used. However, in erythroleukoplakia lesions, the red or erythroplakia areas have been shown to be most likely to demonstrate dysplastic changes compared to the white hyperkeratotic areas. We present a case of patient with erythroleukoplakia involving the lower lip that was treating with carbon dioxide laser radiation (CO2) with 0.8 mm focus, 5 W, power density of 2.5 W/cm(2) in continuous. After the surgery, the vaporized surface was protected with a fibrinolisine + chloramphenicol cream. To date, after 6 months, there has been no clinically evident recurrence on the vermilion area. The functional and esthetic results observed were judged to be excellent.
Resumo:
Ranula is a mucous extravasation cyst which appears as a swelling in the submental and submandibular regions. Several surgical techniques to manage ranula have been described in the literature, these techniques include the CO2 laser radiation excision. Four patients were treated for intraoral ranula in the floor of the mouth by marsupialization with carbon dioxide laser radiation with defocused beam, continuous mode and 4 watts of power. There were no complications and no recurrences have occurred to date. The results showed that carbon dioxide laser radiation gives optimal results with no need for suture and good wound healing.
Resumo:
There have been numerous surgical techniques developed for removing the epulis fissuratum lesions in order to improve alveolar ridge contour and improving adaptation of full prostheses. Most of these techniques can cause postoperative complications, such as oedema, pain, difficulty in swallowing and jaw movements, haemorrhage, infections and slow placement of final prostheses. The use of carbon dioxide (CO2) laser for the surgical removal of epulis lesions has resulted in many significant improvements including convenient mucosa removal, no bleeding or need for sutures, and minimal postoperative pain and oedema. This study is of 15 cases of removal of extensive epulis with vestibuloplasty in the maxilla and mandible that was carried out with CO2 laser, with no postoperative complications, rapid healing, and excellent aesthetic and functional outcome, all of which allowed for more rapid placement of final prosthesis.
Resumo:
Objective: This study compares wound healing efficiency on a rat's skin when the incision was closed with a conventional suture versus vaporized with a CO2 laser. Materials and Methods: In this study, 24 rats were used, and two longitudinal incisions were made with a conventional scalpel in the dorsum of each rat. The left incision was sutured with nylon thread, and the right incision was closed by vaporization with a defocused CO2 laser in continuous mode with an 8-watt power density. Clinical photographs were taken immediately after the procedure, 24 h later, and after 3, 7, 14, and 21 days, documenting the healing of the incision. Results: the results showed that there was an initial delay in wound repair in the vaporized incision as compared to the scalpel incision, but after 21 days, both incisions showed the same clinical characteristics. However, the vaporized incision showed no trauma of the tissue, as opposed to the sutured incision, and no hemorrhagic complications. Conclusion: These results suggest that the CO2 laser can eventually replace the use of sutures.
Resumo:
With the exception of the cleft lip, developmental defects (DD) of the lip are rare. The upper lip originates from the ectomesenchyme and is formed by the merging of the nasal medial and lateral processes with the maxillary process. Disturbances during this formation period can cause DD with functional and/or esthetic repercussions. We present a case of DD of the upper lip in a patient with a history of progressive growth of the left lateral portion of the upper lip that occurred from the time of birth until the age of 22 years. Clinical examination revealed hypertrophy of the area from the left philtral columns to the left commissure of the lip, extending the portion of the surface mucosa creating a flaccid and asymptomatic tissue mass. All other buccal structures appeared to be within normal limits and without any evidence of defects or deformities. In the surgical planning we decided to carry out corrective surgery in two phases. The first phase accomplished a conservative excision of the total abnormal labial tissue mass with a CO2 laser radiation (5 W in continuous mode, bunch diameter φ = 0.6 mm with a power density of 768 W/cm2 and fluency of 0.231 J/cm2) being careful to preserve the vermilion portion of the lip. Postsurgical clinical evaluations were done every three days until the skin sutures were removed and then every seven days until two months post surgery. While the entire mass of excessive tissue could not be completely removed, the removal of the excessive mucosal tissue produced a very good outcome relative to lip function, with a good esthetic result without scarring, and good tissue mobility. The results showed that the CO2 laser is an extremely useful instrument that can provide excellent control of the surgical field and allow for healing that produces excellent functional and esthetic results. © 2005 Taylor & Francis.
Resumo:
Animal studies of excisional biopsies have shown less thermal damage when a carbon dioxide (CO(2)) laser (10.6 μm) is used in a char-free (CF) mode than in a continuous-wave (CW) mode. The authors' aim was to evaluate and compare clinical and histopathologic findings of excisional biopsies performed with CW and CF CO(2) laser (10.6 μm) modes.
Resumo:
In this study we analyzed possible damages that vaporization from laser radiation could cause to implant material. Fifteen standard titanium implants, measuring 3.75 mm in diameter by 7 mm in length, were placed into the upper and lower jaws of three dogs according to Branemark's system. After osseointegration, all implants were exposed. In group I (control) conventional exposure with a punch was used; in group II, a CO2 laser with 2 W (power density: 256 W/cm(2); fluency: 0.077 J/cm(2), and a pulse mode of 0.30 ms) was used, and in group III 4 W (power density: 512 W/cm(2), fluency: 0.154 J/cm(2), and a pulse mode of 0.30 ms) was used. After vaporization, the cover screws were removed and sent for metallographic examination. The results showed that cover screws irradiated with 2 and 4 W power caused no superficial or microstructural alteration. The results also showed that the prescribed power densities, fluencies, and the use of the pulse mode were suitable for exposing implants without damage to tissue or implant material. (C) 2002 Laser Institute of America.
Resumo:
The availability of suitable laser sources is one of the main challenges in future space missions for accurate measurement of atmospheric CO2. The main objective of the European project BRITESPACE is to demonstrate the feasibility of an all-semiconductor laser source to be used as a space-borne laser transmitter in an Integrated Path Differential Absorption (IPDA) lidar system. We present here the proposed transmitter and system architectures, the initial device design and the results of the simulations performed in order to estimate the source requirements in terms of power, beam quality, and spectral properties to achieve the required measurement accuracy. The laser transmitter is based on two InGaAsP/InP monolithic Master Oscillator Power Amplifiers (MOPAs), providing the ON and OFF wavelengths close to the selected absorption line around 1.57 µm. Each MOPA consists of a frequency stabilized Distributed Feedback (DFB) master oscillator, a modulator section, and a tapered semiconductor amplifier optimized to maximize the optical output power. The design of the space-compliant laser module includes the beam forming optics and the thermoelectric coolers.The proposed system replaces the conventional pulsed source with a modulated continuous wave source using the Random Modulation-Continuous Wave (RM-CW) approach, allowing the designed semiconductor MOPA to be applicable in such applications. The system requirements for obtaining a CO2 retrieval accuracy of 1 ppmv and a spatial resolution of less than 10 meters have been defined. Envelope estimated of the returns indicate that the average power needed is of a few watts and that the main noise source is the ambient noise.
Resumo:
In this paper, we report on the progresses of the BRITESPACE Consortium in order to achieve space-borne LIDAR measurements of atmospheric carbon dioxide concentration based on an all semiconductor laser source at 1.57 ?m. The complete design of the proposed RM-CW IPDA LIDAR has been presented and described in detail. Complete descriptions of the laser module and the FSU have been presented. Two bended MOPAs, emitting at the sounding frequency of the on- and off- IPDA channels, have been proposed as the transmitter optical sources with the required high brightness. Experimental results on the bended MOPAs have been presented showing a high spectral purity and promising expectations on the high output power requirements. Finally, the RM-CW approach has been modelled and an estimation of the expected SNR for the entire system is presented. Preliminary results indicate that a CO2 retrieval precision of 1.5 ppm could be achieved with an average output power of 2 W for each channel.
Resumo:
Part A
A problem restricting the development of the CuCl laser has been the decrease in output power with increases of tube temperature above 400°C. At that temperature the CuCl vapor pressure is about .1 torr. This is a small fraction of the buffer gas pressure (He at 10 torr).
The aim of the project was to measure the peak radiation temperature (assumed related to the mean energy of electrons) in the laser discharge as a function of the tube temperature. A 24 gHz gated microwave radiometer was used.
It was found that at the tube temperatures at which the output power began to deteriorate, the electron radiation temperature showed a sharp increase (compared with radiation temperature in pure buffer).
Using the above result, we have postulated that this sudden increase is a result of Penning ionization of the Cu atoms. As a consequence of this process the number of Cu atoms available for lasing decrease.
PART B
The aim of the project was to study the dissociation of CO2 in the glow discharge of flowing CO2 lasers.
A TM011 microwave (3 gHz) cavity was used to measure the radially averaged electron density ne and the electron-neutral collision frequency in the laser discharge. An estimate of the electric field is made from these two measurements. A gas chromatograph was used to measure the chemical composition of the gases after going through the discharge. This instrument was checked against a mass spectrometer for accuracy and sensitivity.
Several typical laser mixtures were .used: CO2-N2-He (1,3,16), (1,3,0), (1,0,16), (1,2,10), (1,2,0), (1,0,10), (2,3,15), (2,3,0), (2,0,15), (1,3,16)+ H2O and pure CO2. Results show that for the conditions studied the dissociation as a function of the electron density is uniquely determined by the STP partial flow rate of CO2, regardless of the amount of N2 and/or He present. The presence of water vapor in the discharge decreased the degree of dissociation.
A simple theoretical model was developed using thermodynamic equilibrium. The electrons were replaced in the calculations by a distributed heat source.
The results are analyzed with a simple kinetic model.