55 resultados para CARBAPENEMASE
Resumo:
Information for patients being screened for Carbapenemase Producing Enterobacteriaceae/Carbapenemase Producing Organism (CPE/CPO)
Resumo:
Information for patients and visitors on�Carbapenemase Producing Enterobacteriaceae/Carbapenemase Producing Organism (CPE/CPO)
Resumo:
This leaflet contains information for healthcare workers on�Carbapenemase Producing Enterobacteriaceae/Carbapenemase Producing Organism (CPE/CPO)
Resumo:
OBJECTIVE: Enterobacteriaceae bacteria harboring Klebsiella pneumoniae carbapenemase are a serious worldwide threat. The molecular identification of these pathogens is not routine in Brazilian hospitals, and a rapid phenotypic screening test is desirable. This study aims to evaluate the modified Hodge test as a phenotypic screening test for Klebsiella pneumoniae carbapenemase. METHOD: From April 2009 to July 2011, all Enterobacteriaceae bacteria that were not susceptible to ertapenem according to Vitek2 analysis were analyzed with the modified Hodge test. All positive isolates and a random subset of negative isolates were also assayed for the presence of blaKPC. Isolates that were positive in modified Hodge tests were sub-classified as true-positives (E. coli touched the ertapenem disk) or inconclusive (distortion of the inhibition zone of E. coli, but growth did not reach the ertapenem disk). Negative results were defined as samples with no distortion of the inhibition zone around the ertapenem disk. RESULTS: Among the 1521 isolates of Enterobacteriaceae bacteria that were not susceptible to ertapenem, 30% were positive for blaKPC, and 35% were positive according to the modified Hodge test (81% specificity). Under the proposed sub-classification, true positives showed a 98% agreement with the blaKPC results. The negative predictive value of the modified Hodge test for detection was 100%. KPC producers showed high antimicrobial resistance rates, but 90% and 77% of these isolates were susceptible to aminoglycoside and tigecycline, respectively. CONCLUSION: Standardizing the modified Hodge test interpretation may improve the specificity of KPC detection. In this study, negative test results ruled out 100% of the isolates harboring Klebsiella pneumoniae carbapenemase-2. The test may therefore be regarded as a good epidemiological tool.
Resumo:
OBJECTIVE: Enterobacteriaceae bacteria harboring Klebsiella pneumoniae carbapenemase are a serious worldwide threat. The molecular identification of these pathogens is not routine in Brazilian hospitals, and a rapid phenotypic screening test is desirable. This study aims to evaluate the modified Hodge test as a phenotypic screening test for Klebsiella pneumoniae carbapenemase. METHOD: From April 2009 to July 2011, all Enterobacteriaceae bacteria that were not susceptible to ertapenem according to Vitek2 analysis were analyzed with the modified Hodge test. All positive isolates and a random subset of negative isolates were also assayed for the presence of blaKPC. Isolates that were positive in modified Hodge tests were sub-classified as true-positives (E. coli touched the ertapenem disk) or inconclusive (distortion of the inhibition zone of E. coli, but growth did not reach the ertapenem disk). Negative results were defined as samples with no distortion of the inhibition zone around the ertapenem disk. RESULTS: Among the 1521 isolates of Enterobacteriaceae bacteria that were not susceptible to ertapenem, 30% were positive for blaKPC, and 35% were positive according to the modified Hodge test (81% specificity). Under the proposed sub-classification, true positives showed a 98% agreement with the blaKPC results. The negative predictive value of the modified Hodge test for detection was 100%. KPC producers showed high antimicrobial resistance rates, but 90% and 77% of these isolates were susceptible to aminoglycoside and tigecycline, respectively. CONCLUSION: Standardizing the modified Hodge test interpretation may improve the specificity of KPC detection. In this study, negative test results ruled out 100% of the isolates harboring Klebsiella pneumoniae carbapenemase 2. The test may therefore be regarded as a good epidemiological tool.
Resumo:
Here, we report a case of OXA-48-producing Salmonella enterica serovar Kentucky of sequence type 198 (ST198) from perianal screening cultures of a patient transferred from Libya to Switzerland. The blaOXA-48 gene was carried by Tn1999.2 and located on an ∼60-kb IncL/M plasmid. This Salmonella strain also possessed the blaVEB-8, aac(6)-Ib, tet(A), sul1, and mphA resistance genes and substitutions in GyrA (Ser83Phe and Asp87Asn) and ParC (Ser80Ile). This finding emphasizes that prompt screening strategies are essential to prevent the dissemination of carbapenemase producers imported from countries where they are endemic.
Resumo:
The prevalence of carbapenemase-producing Enterobacteriaceae (CPE) has increased during the past 10 years. Its detection is frequently difficult, because they do not always show a minimum inhibitory concentration (MIC) value for carbapenems in the resistance range. Both broth microdilution and agar dilution methods are more sensitive than disk diffusion method, Etest and automated systems. Studies on antimicrobial treatment are based on a limited number of patients; therefore, the optimal treatment is not well established. Combination therapy with two active drugs appears to be more effective than monotherapy. Combination of a carbapenem with another active agent — preferentially an aminoglycoside or colistin — could lower mortality provided that the MIC is #4 mg/l and probably #8 mg/l, and is administered in a higher-dose/prolonged-infusion regimen. An aggressive infection control and prevention strategy is recommended, including reinforcement of hand hygiene, using contact precautions and early detection of CPE through use of targeted surveillance.
Resumo:
We evaluated the pet food contained in thirty packages as potential origin of extended-spectrum cephalosporin-resistant Gram-negative organisms and β-lactamase genes (bla). Alive bacteria were not detected by selective culture. However, PCR investigations on food DNA extracts indicated that samples harbored blaCTX-M-15 (53.3%), blaCMY-4 (20%), and blaVEB-4-like (6.7%). Particularly worrisome was the presence of blaOXA-48-like carbapenemases (13.3%). Original pet food ingredients and/or the production process were highly contaminated with bacteria carrying clinically relevant acquired bla genes.
Resumo:
The in-house Carba-NP and Blue-Carba tests were compared using 30 carbapenemase- and 33 non-producing Enterobacteriaceae. Tests were read by three operators. 100% sensitivity was reported for both tests, but Carba-NP was slightly more specific than Blue-Carba (98.9% vs. 91.7%). We describe potential sources of error during tests' preparation and reading.
Resumo:
Pseudomonas aeruginosa is a dreaded opportunistic pathogen that causes severe and often intractable infections in immunocompromised and critically ill patients. This bacterium is also the primary cause of fatal lung infections in patients with cystic fibrosis and a leading nosocomial pathogen responsible for nearly 10% of all hospital-acquired infections. P. aeruginosa is intrinsically recalcitrant to most classes of antibiotics and has the ability to acquire additional resistance during treatment. In particular, resistance to the widely used β-lactam antibiotics is frequently mediated by the expression of AmpC, a chromosomally encoded β-lactamase that is ubiquitously found in P. aeruginosa strains. This dissertation delved into the role of a recently reported chromosomal β-lactamase in P. aeruginosa called PoxB. To date, no detailed studies have addressed the regulation of poxB expression and its contribution to β-lactam resistance in P. aeruginosa. In an effort to better understand the role of this β-lactamase, poxB was deleted from the chromosome and expressed in trans from an IPTG-inducible promoter. The loss of poxB did not affect susceptibility. However, expression in trans in the absence of ampC rendered strains more resistant to the carbapenem β-lactams. The carbapenem-hydrolyzing phenotype was enhanced, reaching intermediate and resistant clinical breakpoints, in the absence of the carbapenem-specific outer membrane porin OprD. As observed for most class D β-lactamases, PoxB was only weakly inhibited by the currently available β-lactamase inhibitors. Moreover, poxB was shown to form an operon with the upstream located poxA, whose expression in trans decreased pox promoter (Ppox) activity suggesting autoregulation. The transcriptional regulator AmpR negatively controlled Ppox activity, however no direct interaction could be demonstrated. A mariner transposon library identified genes involved in the transport of polyamines as potential regulators of pox expression. Unexpectedly, polyamines themselves were able induce resistance to carbapenems. In summary, P. aeruginosa carries a chromosomal-encoded β-lactamase PoxB that can provide resistance against the clinically relevant carbapenems despite its narrow spectrum of hydrolysis and whose activity in vivo may be regulated by polyamines.
Resumo:
Background: The emergence of Enterobacteriaceae harboring IMP-4 or IMP-8 carbapenemases is rare. We report an occurrence of Enterobacteriaceae harboring IMP-4 or IMP-8 carbapenemases in a Chinese tertiary care hospital from November 2010 to December 2012. Methods: The clinical characteristics of 30 patients were described. The genetic relationship of isolates was determined by pulsed-field gel electrophoresis (PFGE). Carbapenemases were detected by modified Hodge test (MHT) and polymerase chain reactions (PCRs). Amplicons were sequenced and blasted to determine the genotype. Results: Most infected patients were from intensive care unit and had complex and serious underlying illnesses requiring mechanical ventilation. PFGE revealed that Klebsiella pneumoniae showed two major PFGE types. Two Klebsiella oxytoca had an indistinguishable PFGE pattern, while four Enterobacter cloacae were different strains. The sequencing studies showed Enterobacteriaceae harboring IMP-4 or IMP-8 carbapenemase in the 23 infected patients. The majority of patients had infections with the carbapenemase-producing Enterobacteriaceae (CPE) strain, most were successfully treated with a range of antibiotics and discharged. Conclusion: It is important to maintain a high index of suspicion to screen for carbapenemase-producing Enterobacteriaceae strains. Rapid identification of these strains and implementation of stringent procedures are the key to prevent major outbreaks in a hospital setting. Keywords:
Resumo:
Pseudomonas aeruginosa is a dreaded opportunistic pathogen that causes severe and often intractable infections in immunocompromised and critically ill patients. This bacterium is also the primary cause of fatal lung infections in patients with cystic fibrosis and a leading nosocomial pathogen responsible for nearly 10% of all hospital-acquired infections. P. aeruginosa is intrinsically recalcitrant to most classes of antibiotics and has the ability to acquire additional resistance during treatment. In particular, resistance to the widely used β-lactam antibiotics is frequently mediated by the expression of AmpC, a chromosomally encoded β-lactamase that is ubiquitously found in P. aeruginosa strains. This dissertation delved into the role of a recently reported chromosomal β-lactamase in P. aeruginosa called PoxB. To date, no detailed studies have addressed the regulation of poxB expression and its contribution to β-lactam resistance in P. aeruginosa. In an effort to better understand the role of this β-lactamase, poxB was deleted from the chromosome and expressed in trans from an IPTG-inducible promoter. The loss of poxB did not affect susceptibility. However, expression in trans in the absence of ampC rendered strains more resistant to the carbapenem β-lactams. The carbapenem-hydrolyzing phenotype was enhanced, reaching intermediate and resistant clinical breakpoints, in the absence of the carbapenem-specific outer membrane porin OprD. As observed for most class D β-lactamases, PoxB was only weakly inhibited by the currently available β-lactamase inhibitors. Moreover, poxB was shown to form an operon with the upstream located poxA, whose expression in trans decreased pox promoter (Ppox) activity suggesting autoregulation. The transcriptional regulator AmpR negatively controlled Ppox activity, however no direct interaction could be demonstrated. A mariner transposon library identified genes involved in the transport of polyamines as potential regulators of pox expression. Unexpectedly, polyamines themselves were able induce resistance to carbapenems. In summary, P. aeruginosa carries a chromosomal-encoded β-lactamase PoxB that can provide resistance against the clinically relevant carbapenems despite its narrow spectrum of hydrolysis and whose activity in vivo may be regulated by polyamines.^