912 resultados para CANDIDATE STARS
Resumo:
A preliminary search for stars that may have formed coevally with the apparently young halo B-type star PHL 346 has been performed with the 2dF multifibre spectrograph on the Anglo- Australian Telescope (AAT). Candidates were selected for spectroscopy from APM scans of B and R Schmidt plates centred on PHL 346. A total of 476 stars of spectral type A or F were found; radial velocity estimates and more accurate spectral type assignments narrowed the number of possible coeval candidates to 6 A-type and 14 F-type stars. A statistical analysis of these results using a comparison with a control field suggests that the number of A-type or F-type candidate stars around PHL 346 is not unexpected, and that they need not be associated with PHL 346. A number of ways to improve the project are suggested.
Resumo:
We present optical spectra of pre-main-sequence (PMS) candidates around the Ha region taken with the Southern African Large Telescope in the low metallicity (Z) Galactic region Sh 2-284, which includes the open cluster Dolidze 25 with an atypical low metallicity of Z similar to 1/5 Z(circle dot). It has been suggested on the basis of both theory and observations that PMS mass-accretion rates, (M) over dot(acc), are a function of Z. We present the first sample of spectroscopic estimates of mass-accretion rates for PMS stars in any low-Z star-forming region. Our data set was enlarged with literature data of H alpha emission in intermediate-resolution R-band spectroscopy. Our total sample includes 24 objects spanning a mass range between 1 and 2 M-circle dot and with a median age of approximately 3.5 Myr. The vast majority (21 out of 24) show evidence for a circumstellar disk on the basis of Two Micron All Sky Survey and Spitzer infrared photometry. We find (M) over dot(acc) in the 1-2 M-circle dot interval to depend quasi-quadratically on stellarmass, with (M) over dot(acc) proportional to M-*(2.4 +/- 0.35), and inversely with stellar age, with (M) over dot(acc) proportional to t(*)(-0.7 +/- 0.4). Furthermore, we compare our spectroscopic (M) over dot(acc) measurements with solar Z Galactic PMS stars in the same mass range, but, surprisingly find no evidence for a systematic change in (M) over dot(acc) with Z. We show that literature accretion-rate studies are influenced by detection limits, and we suggest that (M) over dot(acc) may be controlled by factors other than Z(*), M-*, and age.
Resumo:
Le relevé DEBRIS est effectué par le télescope spatial Herschel. Il permet d’échantillonner les disques de débris autour d’étoiles de l’environnement solaire. Dans la première partie de ce mémoire, un relevé polarimétrique de 108 étoiles des candidates de DEBRIS est présenté. Utilisant le polarimètre de l’Observatoire du Mont-Mégantic, des observations ont été effectuées afin de détecter la polarisation due à la présence de disques de débris. En raison d’un faible taux de détection d’étoiles polarisées, une analyse statistique a été réalisée dans le but de comparer la polarisation d’étoiles possédant un excès dans l’infrarouge et la polarisation de celles n’en possédant pas. Utilisant la théorie de diffusion de Mie, un modèle a été construit afin de prédire la polarisation due à un disque de débris. Les résultats du modèle sont cohérents avec les observations. La deuxième partie de ce mémoire présente des tests optiques du polarimètre POL-2, construit à l’Université de Montréal. L’imageur du télescope James-Clerk-Maxwell passe de l’instrument SCUBA à l’instrument SCUBA-2, qui sera au moins cent fois plus rapide que son prédécesseur. De même, le polarimètre suit l’amélioration et un nouveau polarimètre, POL-2, a été installé sur SCUBA-2 en juillet 2010. Afin de vérifier les performances optiques de POL-2, des tests ont été exécutés dans les laboratoires sub-millimétriques de l’Université de Western Ontario en juin 2009 et de l’Université de Lethbridge en septembre 2009. Ces tests et leurs implications pour les observations futures sont discutés.
Resumo:
Context. The young associations offer us one of the best opportunities to study the properties of young stellar and substellar objects and to directly image planets thanks to their proximity (<200 pc) and age (≈5−150 Myr). However, many previous works have been limited to identifying the brighter, more active members (≈1 M_⊙) owing to photometric survey sensitivities limiting the detections of lower mass objects. Aims. We search the field of view of 542 previously identified members of the young associations to identify wide or extremely wide (1000−100 000 au in physical separation) companions. Methods. We combined 2MASS near-infrared photometry (J, H, K) with proper motion values (from UCAC4, PPMXL, NOMAD) to identify companions in the field of view of known members. We collated further photometry and spectroscopy from the literature and conducted our own high-resolution spectroscopic observations for a subsample of candidate members. This complementary information allowed us to assess the efficiency of our method. Results. We identified 84 targets (45: 0.2−1.3 M_⊙, 17: 0.08−0.2 M_⊙, 22: <0.08 M_⊙) in our analysis, ten of which have been identified from spectroscopic analysis in previous young association works. For 33 of these 84, we were able to further assess their membership using a variety of properties (X-ray emission, UV excess, Hα, lithium and K I equivalent widths, radial velocities, and CaH indices). We derive a success rate of 76–88% for this technique based on the consistency of these properties. Conclusions. Once confirmed, the targets identified in this work would significantly improve our knowledge of the lower mass end of the young associations. Additionally, these targets would make an ideal new sample for the identification and study of planets around nearby young stars. Given the predicted substellar mass of the majority of these new candidate members and their proximity, high-contrast imaging techniques would facilitate the search for new low-mass planets.
Resumo:
We obtained high-resolution, high-contrast optical imaging in the Sloan Digital Sky Survey i′ band with the LuckyCam camera mounted on the 2.56 m Nordic Optical Telescope, to search for faint stellar companions to 16 stars harbouring transiting exoplanets. The Lucky imaging technique uses very short exposures to obtain near diffraction-limited images yielding sub-arcsecond sensitivity, allowing us to search for faint stellar companions within the seeing disc of the primary planet host. Here, we report the detection of two candidate stellar companions to the planet host TrES-1 at separations <6.5 arcsec and we confirm stellar companions to CoRoT-2, CoRoT-3, TrES-2, TrES-4 and HAT-P-7 already known in the literature. We do not confirm the candidate companions to HAT-P-8 found via Lucky imaging by Bergfors et al., however, most probably because HAT-P-8 was observed in poor seeing conditions. Our detection sensitivity limits allow us to place constraints on the spectral types and masses of the putative bound companions to the planet host stars in our sample. If bound, the stellar companions identified in this work would provide stringent observational constraints to models of planet formation and evolution. In addition, these companions could affect the derived physical properties of the exoplanets in these systems.
Resumo:
Context. The VLT-FLAMES Tarantula Survey has an extensive view of the copious number of massive stars in the 30 Doradus (30 Dor) star forming region of the Large Magellanic Cloud. These stars play a crucial role in our understanding of the stellar feedback in more distant, unresolved star forming regions. Aims. The first comprehensive census of hot luminous stars in 30 Dor is compiled within a 10 arcmin (150 pc) radius of its central cluster, R136. We investigate the stellar content and spectroscopic completeness of the early type stars. Estimates were made for both the integrated ionising luminosity and stellar wind luminosity. These values were used to re-assess the star formation rate (SFR) of the region and determine the ionising photon escape fraction. Methods. Stars were selected photometrically and combined with the latest spectral classifications. Spectral types were estimated for stars lacking spectroscopy and corrections were made for binary systems, where possible. Stellar calibrations were applied to obtain their physical parameters and wind properties. Their integrated properties were then compared to global observations from ultraviolet (UV) to far-infrared (FIR) imaging as well as the population synthesis code, Starburst99. Results. Our census identified 1145 candidate hot luminous stars within 150 pc of R136 of which >700 were considered to be genuine early type stars and contribute to feedback. We assess the survey to be spectroscopically complete to 85% in the outer regions (>5 pc) but only 35% complete in the region of the R136 cluster, giving a total of 500 hot luminous stars in the census which had spectroscopy. Only 31 were found to be Wolf-Rayet (W-R) or Of/WN stars, but their contribution to the integrated ionising luminosity and wind luminosity was ~ 40% and ~ 50%, respectively. Similarly, stars with M > 100 M (mostly H-rich WN stars) also showed high contributions to the global feedback, ~ 25% in both cases. Such massive stars are not accounted for by the current Starburst99 code, which was found to underestimate the integrated ionising luminosity of R136 by a factor ~ 2 and the wind luminosity by a factor ~ 9. The census inferred a SFR for 30 Dor of 0.073 ± 0.04 M yr . This was generally higher than that obtained from some popular SFR calibrations but still showed good consistency with the far-UV luminosity tracer as well as the combined Hα and mid-infrared tracer, but only after correcting for Hα extinction. The global ionising output was also found to exceed that measured from the associated gas and dust, suggesting that ~6 % of the ionising photons escape the region. Conclusions. When studying the most luminous star forming regions, it is essential to include their most massive stars if one is to determine a reliable energy budget. Photon leakage becomes more likely after including their large contributions to the ionising output. If 30 Dor is typical of other massive star forming regions, estimates of the SFR will be underpredicted if this escape fraction is not accounted for.
Resumo:
We observed 51 Peg, the first detected planet-bearing star, in a 55 ks XMM-Newton pointing and in 5 ks pointings each with Chandra HRC-I and ACIS-S. The star has a very low count rate in the XMM observation, but is clearly visible in the Chandra images due to the detectors' different sensitivity at low X-ray energies. This allows a temperature estimate for 51 Peg's corona of T⪉ 1 MK; the detected ACIS-S photons can be plausibly explained by emission lines of a very cool plasma near 200 eV. The constantly low X-ray surface flux and the flat-activity profile seen in optical Ca II data suggest that 51 Peg is a Maunder minimum star; an activity enhancement due to a Hot Jupiter, as proposed by recent studies, seems to be absent. The star's X-ray fluxes in different instruments are consistent with the exception of the HRC Imager, which might have a larger effective area below 200 eV than given in the calibration.
Resumo:
We have carried out high contrast imaging of 70 young, nearby B and A stars to search for brown dwarf and planetary companions as part of the Gemini NICI Planet-Finding Campaign. Our survey represents the largest, deepest survey for planets around high-mass stars (≈1.5-2.5 M ☉) conducted to date and includes the planet hosts β Pic and Fomalhaut. We obtained follow-up astrometry of all candidate companions within 400 AU projected separation for stars in uncrowded fields and identified new low-mass companions to HD 1160 and HIP 79797. We have found that the previously known young brown dwarf companion to HIP 79797 is itself a tight (3 AU) binary, composed of brown dwarfs with masses 58$^{+21}_{-20}$ M Jup and 55$^{+20}_{-19}$ M Jup, making this system one of the rare substellar binaries in orbit around a star. Considering the contrast limits of our NICI data and the fact that we did not detect any planets, we use high-fidelity Monte Carlo simulations to show that fewer than 20% of 2 M ☉ stars can have giant planets greater than 4 M Jup between 59 and 460 AU at 95% confidence, and fewer than 10% of these stars can have a planet more massive than 10 M Jup between 38 and 650 AU. Overall, we find that large-separation giant planets are not common around B and A stars: fewer than 10% of B and A stars can have an analog to the HR 8799 b (7 M Jup, 68 AU) planet at 95% confidence. We also describe a new Bayesian technique for determining the ages of field B and A stars from photometry and theoretical isochrones. Our method produces more plausible ages for high-mass stars than previous age-dating techniques, which tend to underestimate stellar ages and their uncertainties.
Resumo:
Stellar kinematic groups are kinematical coherent groups of stars that might have a common origin. These groups are dispersed throughout the Galaxy over time by the tidal effects of both Galactic rotation and disc heating, although their chemical content remains unchanged. The aim of chemical tagging is to establish that the abundances of every element in the analysis are homogeneus among the members. We study the case of the Hyades Supercluster to compile a reliable list of members (FGK stars) based on our chemical tagging analysis. For a total of 61 stars from the Hyades Supercluster, stellar atmospheric parameters (T_eff, log g, ξ, and [Fe/H]) are determined using our code called StePar, which is based on the sensitivity to the stellar atmospheric parameters of the iron EWs measured in the spectra. We derive the chemical abundances of 20 elements and find that their [X/Fe] ratios are consistent with Galactic abundance trends reported in previous studies. The chemical tagging method is applied with a carefully developed differential abundance analysis of each candidate member of the Hyades Supercluster, using a well-known member of the Hyades cluster as a reference (vB 153). We find that only 28 stars (26 dwarfs and 2 giants) are members, i.e. that 46% of our candidates are members based on the differential abundance analysis. This result confirms that the Hyades Supercluster cannot originate solely from the Hyades cluster.
Resumo:
Context. The associations and moving groups of young stars are excellent laboratories for investigating stellar formation in the solar neighborhood. Previous results have confirmed that a non-negligible fraction of old main-sequence stars is present in the lists of possible members of young stellar kinematic groups. A detailed study of the properties of these samples is needed to separate the young stars from old main-sequence stars with similar space motion, and identify the origin of these structures. Aims. Our intention is to characterize members of the young moving groups, determine their age distribution, and quantify the contamination by old main-sequence stars, in particular, for the Local Association. Methods. We used stars possible members of the young (~10-650 Myr) moving groups from the literature. To determine the age of the stars, we used several suitable age indicators for young main sequence stars, i.e., X-ray fluxes from the Rosat All-sky Survey database, photometric data from the Tycho-2, Hipparcos, and 2MASS database. We also used spectroscopic data, in particular the equivalent width of the lithium line Li I λ6707.8 Å and H_α, to constrain the range of ages of the stars. Results. By combining photometric and spectroscopic data, we were able to separate the young stars (10-650 Myr) from the old (> 1 Gyr) field ones. We found, in particular, that the Local Association is contaminated by old field stars at the level of ~30%. This value must be considered as the contamination for our particular sample, and not of the entire Local Association. For other young moving groups, it is more difficult to estimate the fraction of old stars among possible members. However, the level of X-ray emission can, at least, help to separate two age populations: stars with <200 Myr and stars older than this. Conclusions. Among the candidate members of the classical moving groups, there is a non-negligible fraction of old field stars that should be taken into account when studying the stellar birthrate in the solar neighborhood. Our results are consistent with a scenario in which the moving groups contain both groups of young stars formed in a recent star-formation episode and old field stars with similar space motion. Only by combining X-ray and optical spectroscopic data is it possible to distinguish between these two age populations.
Resumo:
Context. Luminous blue variables (LBVs) are a class of highly unstable stars that have been proposed to play a critical role in massive stellar evolution as well as being the progenitors of some of the most luminous supernovae known. However the physical processes underlying their characteristic instabilities are currently unknown. Aims. In order to provide observational constraints on this behaviour we have initiated a pilot study of the population of (candidate) LBVs in the Local Group galaxy M 33. Methods. To accomplish this we have obtained new spectra of 18 examples within M 33. These provide a baseline of ≥ 4 yr with respect to previous observations, which is well suited to identifying LBV outbursts. We also employed existing multi-epoch optical and mid-IR surveys of M 33 to further constrain the variability of the sample and search for the presence of dusty ejecta. Results. Combining the datasets reveals that spectroscopic and photometric variability appears common, although in the majority of cases further observations will be needed to distinguish between an origin for this behavour in short lived stochastic wind structure and low level photospheric pulsations or coherent long term LBV excursions. Of the known LBVs we report a hitherto unidentified excursion of M 33 Var C between 2001-5, while the transition of the WNLh star B517 to a cooler B supergiant phase between 1993−2010 implies an LBV classification. Proof-of-concept quantitative model atmosphere analysis is provided for Romano’s star; the resultant stellar parameters being consistent with the finding that the LBV excursions of this star are accompanied by changes in bolometric luminosity. The combination of temperature and luminosity of two stars, the BHG [HS80] 110A and the cool hypergiant B324, appear to be in violation of the empirical Humphreys-Davidson limit. Mid-IR observations demonstrate that a number of candidates appear associated with hot circumstellar dust, although no objects as extreme as η Car are identified. The combined dataset suggests that the criteria employed to identify candidate LBVs results in a heterogeneous sample, also containing stars demonstrating the B[e] phenomenon. Of these, a subset of optically faint, low luminosity stars associated with hot dust are of particular interest since they appear similar to the likely progenitor of SN 2008S and the 2008 NGC 300 transient (albeit suffering less intrinsic extinction). Conclusions. The results of such a multiwavelength observational approach, employing multiplexing spectrographs and supplemented with quantitative model atmosphere analysis, appears to show considerable promise in both identifying and characterising the physical properties of LBVs as well as other short lived phases of massive stellar evolution.
Resumo:
We present spectral classifications for 438 B-type stars observed as part of the VLT-FLAMES Tarantula Survey (VFTS) in the 30 Doradus region of the Large Magellanic Cloud. Radial velocities are provided for 307 apparently single stars, and for 99 targets with radial-velocity variations which are consistent with them being spectroscopic binaries. We investigate the spatial distribution of the radial velocities across the 30 Dor region, and use the results to identify candidate runaway stars. Excluding potential runaways and members of two older clusters in the survey region (SL 639 and Hodge 301), we determine a systemic velocity for 30 Dor of 271.6 ± 12.2 km s-1 from 273 presumed single stars. Employing a 3σ criterion we identify nine candidate runaway stars (2.9% of the single stars with radial-velocity estimates). The projected rotational velocities of the candidate runaways appear to be significantly different to those of the full B-type sample, with a strong preference for either large (≥345 km s-1) or small (≤65 km s-1) rotational velocities. Of the candidate runaways, VFTS 358 (classified B0.5: V) has the largest differential radial velocity (-106.9 ± 16.2 km s-1), and a preliminary atmospheric analysis finds a significantly enriched nitrogen abundance of 12 + log (N/H) ≳ 8.5. Combined with a large rotational velocity (υe sin i = 345 ± 22 km s-1), this is suggestive of past binary interaction for this star.
Resumo:
We report the discovery of the B[e] star VFTS 822 in the 30 Doradus star-forming region of the Large Magellanic Cloud, classified by optical spectroscopy from the VLT-FLAMES Tarantula Survey and complementary infrared photometry. VFTS 822 is a relatively low-luminosity (log L = 4.04 ± 0.25 L·) B8[e] star. In this Letter, we evaluate the evolutionary status of VFTS 822 and discuss its candidacy as a Herbig B[e] star. If the object is indeed in the pre-main sequence phase, it would present an exciting opportunity to spectroscopically measure mass accretion rates at low metallicity, to probe the effect of metallicity on accretion rates.
Resumo:
The Node-based Local Mesh Generation (NLMG) algorithm, which is free of mesh inconsistency, is one of core algorithms in the Node-based Local Finite Element Method (NLFEM) to achieve the seamless link between mesh generation and stiffness matrix calculation, and the seamless link helps to improve the parallel efficiency of FEM. Furthermore, the key to ensure the efficiency and reliability of NLMG is to determine the candidate satellite-node set of a central node quickly and accurately. This paper develops a Fast Local Search Method based on Uniform Bucket (FLSMUB) and a Fast Local Search Method based on Multilayer Bucket (FLSMMB), and applies them successfully to the decisive problems, i.e. presenting the candidate satellite-node set of any central node in NLMG algorithm. Using FLSMUB or FLSMMB, the NLMG algorithm becomes a practical tool to reduce the parallel computation cost of FEM. Parallel numerical experiments validate that either FLSMUB or FLSMMB is fast, reliable and efficient for their suitable problems and that they are especially effective for computing the large-scale parallel problems.