18 resultados para CANDIDAEMIA
Resumo:
Candida spp. are important healthcare-associated pathogens. Identifying the source of infection is important for prevention and control strategies. The objective of this study was to evaluate candida colonisation sites as potential sources for candidaemia. Sixty-three consecutive patients with a positive blood culture for candida were included. Surveillance cultures were collected from urine, rectum, oropharynx, skin, intravascular catheter tip and skin around catheter. Molecular typing was performed when the same species of candida was isolated from blood and surveillance sites of a patient. C. albicans was associated with 42% of candidaemias, C. parapsilosis 33%, C. tropicalis 16% and C. guilliermondii, C. krusei, C. glabrata, C. holmii and C. metapsilosis were all 2% each. Six of 10 C. parapsilosis catheter tip isolates were indistinguishable from corresponding blood isolates (all in neonates). C. albicans isolates from blood were indistinguishable from corresponding gastrointestinal, tract isolates in 13 of 26 patients and from catheter tip isolates in two patients. In conclusion, the results suggest that gastrointestinal colonisation is the probable source of C. albicans candidaemia and C. parapsilosis is exogenous. (C) 2009 The Hospital, Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Candida is an important nosocomial pathogen. This study was undertaken to provide information on the rate of candidaemia, to define the risks for candidaemia and to describe and account for the epidemiology of candidaemia at our institution between 1992 and 1999. The overall rate was 0.052 per 1000 patient days and 0.27 per 1000 discharges. The major risks for candidaemia were colonization at a non-sterile site (OR 3.85, 95%CI 1.80-9.09), total parenteral nutrition (TPN) in the absence of neutropenia (OR 11.8, 95%CI 4.5-35.4, P
Resumo:
Candidaemia is the fourth most common cause of bloodstream infection, with a high mortality rate of up to 40%. Identification of host genetic factors that confer susceptibility to candidaemia may aid in designing adjunctive immunotherapeutic strategies. Here we hypothesize that variation in immune genes may predispose to candidaemia. We analyse 118,989 single-nucleotide polymorphisms (SNPs) across 186 loci known to be associated with immune-mediated diseases in the largest candidaemia cohort to date of 217 patients of European ancestry and a group of 11,920 controls. We validate the significant associations by comparison with a disease-matched control group. We observe significant association between candidaemia and SNPs in the CD58 (P = 1.97 × 10(-11); odds ratio (OR) = 4.68), LCE4A-C1orf68 (P = 1.98 × 10(-10); OR = 4.25) and TAGAP (P = 1.84 × 10(-8); OR = 2.96) loci. Individuals carrying two or more risk alleles have an increased risk for candidaemia of 19.4-fold compared with individuals carrying no risk allele. We identify three novel genetic risk factors for candidaemia, which we subsequently validate for their role in antifungal host defence.
Resumo:
Candida species are an important cause of bloodstream infections (BSI). To evaluate the epidemiological, clinical and microbiological aspects of two cohorts {1994-1999 [period 1 (P1) ]; 2000-2004 [period 2 (P2) ]} of candidaemic patients, we performed a retrospective analysis from a laboratory-based survey. A total of 388 candidaemias were identified, with an incidence of 0.20/1,000 patient-days and a significant increase in P2 vs. P1 (0.25 vs. 0.15, p = 0.04). Cancer and prior antibiotic use were frequent and Candida albicans was the most prevalent species found (42.4%). Resistance to fluconazole was found in 2.47% of the strains. No differences were observed in the species distribution of Candida during the study periods. In the P2 cohort, there were higher prevalence of elderly individuals, cardiac, pulmonary and liver diseases, renal failure, central venous catheters and antibiotic therapy. In P1, there were higher prevalence of neurological diseases and chemotherapy. The crude mortality was 55.4%. In conclusion, our incidence rates remained high. Furthermore, the distribution pattern of Candida species and the fluconazole resistance profile remained unchanged. Moreover, we found a clear trend of higher prevalence of candidaemia among the elderly and among patients with comorbidities. Finally, it is necessary to discuss strategies for the prevention and control of Candida BSI in Brazil.
Resumo:
We analyzed the species distribution of Candida blood isolates (CBIs), prospectively collected between 2004 and 2009 within FUNGINOS, and compared their antifungal susceptibility according to clinical breakpoints defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) in 2013, and the Clinical and Laboratory Standards Institute (CLSI) in 2008 (old CLSI breakpoints) and 2012 (new CLSI breakpoints). CBIs were tested for susceptiblity to fluconazole, voriconazole and caspofungin by microtitre broth dilution (Sensititre(®) YeastOne? test panel). Of 1090 CBIs, 675 (61.9%) were C. albicans, 191 (17.5%) C. glabrata, 64 (5.9%) C. tropicalis, 59 (5.4%) C. parapsilosis, 33 (3%) C. dubliniensis, 22 (2%) C. krusei and 46 (4.2%) rare Candida species. Independently of the breakpoints applied, C. albicans was almost uniformly (>98%) susceptible to all three antifungal agents. In contrast, the proportions of fluconazole- and voriconazole-susceptible C. tropicalis and F-susceptible C. parapsilosis were lower according to EUCAST/new CLSI breakpoints than to the old CLSI breakpoints. For caspofungin, non-susceptibility occurred mainly in C. krusei (63.3%) and C. glabrata (9.4%). Nine isolates (five C. tropicalis, three C. albicans and one C. parapsilosis) were cross-resistant to azoles according to EUCAST breakpoints, compared with three isolates (two C. albicans and one C. tropicalis) according to new and two (2 C. albicans) according to old CLSI breakpoints. Four species (C. albicans, C. glabrata, C. tropicalis and C. parapsilosis) represented >90% of all CBIs. In vitro resistance to fluconazole, voriconazole and caspofungin was rare among C. albicans, but an increase of non-susceptibile isolates was observed among C. tropicalis/C. parapsilosis for the azoles and C. glabrata/C. krusei for caspofungin according to EUCAST and new CLSI breakpoints compared with old CLSI breakpoints.
Resumo:
We analyzed the species distribution of Candida blood isolates (CBIs), prospectively collected between 2004 and 2009 within FUNGINOS, and compared their antifungal susceptibility according to clinical breakpoints defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) in 2013, and the Clinical and Laboratory Standards Institute (CLSI) in 2008 (old CLSI breakpoints) and 2012 (new CLSI breakpoints). CBIs were tested for susceptiblity to fluconazole, voriconazole and caspofungin by microtitre broth dilution (Sensititre® YeastOne™ test panel). Of 1090 CBIs, 675 (61.9%) were C. albicans, 191 (17.5%) C. glabrata, 64 (5.9%) C. tropicalis, 59 (5.4%) C. parapsilosis, 33 (3%) C. dubliniensis, 22 (2%) C. krusei and 46 (4.2%) rare Candida species. Independently of the breakpoints applied, C. albicans was almost uniformly (>98%) susceptible to all three antifungal agents. In contrast, the proportions of fluconazole- and voriconazole-susceptible C. tropicalis and F-susceptible C. parapsilosis were lower according to EUCAST/new CLSI breakpoints than to the old CLSI breakpoints. For caspofungin, non-susceptibility occurred mainly in C. krusei (63.3%) and C. glabrata (9.4%). Nine isolates (five C. tropicalis, three C. albicans and one C. parapsilosis) were cross-resistant to azoles according to EUCAST breakpoints, compared with three isolates (two C. albicans and one C. tropicalis) according to new and two (2 C. albicans) according to old CLSI breakpoints. Four species (C. albicans, C. glabrata, C. tropicalis and C. parapsilosis) represented >90% of all CBIs. In vitro resistance to fluconazole, voriconazole and caspofungin was rare among C. albicans, but an increase of non-susceptibile isolates was observed among C. tropicalis/C. parapsilosis for the azoles and C. glabrata/C. krusei for caspofungin according to EUCAST and new CLSI breakpoints compared with old CLSI breakpoints.
Resumo:
Funding This work was supported by the Wellcome Trust Strategic Award for Medical Mycology and Fungal Immunology 097377/Z/11/Z. Data collection was supported by a grant from Pfizer. GR was also supported by a research fellowship grant from Gilead Sciences. The collection of the isolates was funded by a Gilead Fellowship to GR.
Resumo:
Herbal medications are becoming increasingly popular but a most-extraordinary claim by traditional/herbal medical practitioners relates to a Gram-positive bacterium, Staphylococcus , which has been depicted as a deadly sexually transmitted disease that manifest in the form of worms and other symptoms; with contributory roles including infertility, sexual dysfunction and impotency. They further boasted that they are the only ones that possessed the remedy (herbal) for the Staphylococcus sexually transmitted scourge. In the absence of distinguishing phenotypic taxonomic tools, Staphylococcus and Candida spp. may be confused for each other. However, Staphylococcus is a bacterium and not an infection; therefore, there must be more to the traditional medical practitioners’ boasts in ability to cure an infection that was not an infection in the first place. In conclusion, the common sense is that candiaemia or candidiasis is most likely the misdiagnosed sexually transmitted Staphylococcus disease, which is of significant human clinical health issue.
Resumo:
Candidemia is associated with high morbidity and mortality resulting in significant increases in the length of patients` hospitalization and in healthcare costs. Critically ill patients are at particular risk for candidemia because of their debilitated condition and frequent need for invasive procedures. The aim of this study was to characterize the incidence and epidemiology of candidemia over a seven-year period in intensive care units (ICUs) and the use of fluconazole and caspofungin in a large university-affiliated hospital. All cases of candidemia were identified by surveillance, using the Centers for Diseases Control and Prevention criteria. Demographic variables, use of antifungal (fluconazole and caspofungin) and patient outcomes were evaluated. The 2 test for linear trend was employed to evaluate the distribution of Candida spp. and the use of fluconazole and caspofungin by defined daily dose (DDD) per 1,000 patients-days during the study period. One hundred and eight episodes of candidemia were identified. The overall incidence of candidemia (P=0.20) and incidence of non-Candida albicans Candida infections (P=0.32) remained stable over the study period and ranged from 0.3-0.9 episodes per 1,000 catheter-days and 0.39-0.83 episodes per 1,000 patients-days. However, the use of fluconazole and caspofungin increased significantly (P0.001). While there were no reports of the use of fluconazole for prophylaxis in 1999, its use for this purpose increased from 3% in 2000 to 7.0% (P=0.07) in 2006. C. albicans was the most frequent specie isolated and burns and cancer were the most frequent underlying conditions. The overall mortality was 76%. There was no difference between C. albicans and non-C. albicans Candida infections when the crude and 14-day mortality rates were compared. Our data demonstrated that C. albicans is still the most frequent species causing candidemia in our intensive care units. Our rates of candidemia are lower than those reported from the region and similar to American and European hospitals. Although the incidence of blood stream infections (BSI) and candidemia remained stable, the use of fluconazole and caspofungin increased significantly over the years included in this study but had no impact on the incidence of infections caused by non-C. albicans Candida species.
Resumo:
Candida guilliermondii is one of the components of human microbiota. This yeast has been infrequently associated with human infections, which may be related to its low pathogenicity. The aim of this study was to provide clinical and epidemiological data for patients infected with C. guilliermondii at Santa Casa Complexo Hospitalar, Brazil. From October 1997 to October 2003, C. guilliermondii was isolated from clinical samples from 11 patients. Three patients were excluded because the isolation of the yeast represented colonisation. Specimens from the eight patients included in the study corresponded to blood (n = 5), ascitis fluid (n = 2), and oesophagus biopsy (n = 1). Three patients (37.5%) had major immunosuppressed conditions, including solid organ transplantation, AIDS, and leukaemia. Previous use of antibiotics occurred in 87.5%. Main invasive medical procedures were central venous catheter (50.0%), abdominal surgery (25.0%), and peritoneal dialysis (50.0%). No susceptibility data was obtained. Although risk factors for candidaemia were similar amongst patients infected by with C. guilliermondii or other Candida species, mortality associated with C. guilliermondii was significantly lower.
Resumo:
Candida albicans is a common member of the human microbiota and may cause invasive disease in susceptible populations. Several risk factors have been proposed for candidaemia acquisition. Previous Candida multifocal colonisation among hospitalised patients may be crucial for the successful establishment of candidaemia. Nevertheless, it is still not clear whether the persistence or replacement of a single clone of C. albicans in multiple anatomical sites of the organism may represent an additional risk for candidaemia acquisition. Therefore, we prospectively evaluated the dynamics of the colonising strains of C. albicans for two groups of seven critically ill patients: group I included patients colonised by C. albicans in multiple sites who did not develop candidaemia and group II included patients who were colonised and who developed candidaemia. ABC and microsatellite genotyping of 51 strains of C. albicans revealed that patients who did not develop candidaemia were multiply colonised by at least two ABC genotypes of C. albicans, whereas candidaemic patients had highly related microsatellites and the same ABC genotype in colonising and bloodstream isolates that were probably present in different body sites before the onset of candidaemia.
Resumo:
Fungal diseases still play a major role in morbidity and mortality in patients with haematological malignancies, including those undergoing haematopoietic stem cell transplantation. Although Aspergillus and other filamentous fungal diseases remain a major concern, Candida infections are still a major cause of mortality. This part of the ESCMID guidelines focuses on this patient population and reviews pertaining to prophylaxis, empirical/pre-emptive and targeted therapy of Candida diseases. Anti-Candida prophylaxis is only recommended for patients receiving allogeneic stem cell transplantation. The authors recognize that the recommendations would have most likely been different if the purpose would have been prevention of all fungal infections (e.g. aspergillosis). In targeted treatment of candidaemia, recommendations for treatment are available for all echinocandins, that is anidulafungin (AI), caspofungin (AI) and micafungin (AI), although a warning for resistance is expressed. Liposomal amphotericin B received a BI recommendation due to higher number of reported adverse events in the trials. Amphotericin B deoxycholate should not be used (DII); and fluconazole was rated CI because of a change in epidemiology in some areas in Europe. Removal of central venous catheters is recommended during candidaemia but if catheter retention is a clinical necessity, treatment with an echinocandin is an option (CII(t) ). In chronic disseminated candidiasis therapy, recommendations are liposomal amphotericin B for 8 weeks (AIII), fluconazole for >3 months or other azoles (BIII). Granulocyte transfusions are only an option in desperate cases of patients with Candida disease and neutropenia (CIII).
Resumo:
As the mortality associated with invasive Candida infections remains high, it is important to make optimal use of available diagnostic tools to initiate antifungal therapy as early as possible and to select the most appropriate antifungal drug. A panel of experts of the European Fungal Infection Study Group (EFISG) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) undertook a data review and compiled guidelines for the clinical utility and accuracy of different diagnostic tests and procedures for detection of Candida infections. Recommendations about the microbiological investigation and detection of candidaemia, invasive candidiasis, chronic disseminated candidiasis, and oropharyngeal, oesophageal, and vaginal candidiasis were included. In addition, remarks about antifungal susceptibility testing and therapeutic drug monitoring were made.
Resumo:
This part of the EFISG guidelines focuses on non-neutropenic adult patients. Only a few of the numerous recommendations can be summarized in the abstract. Prophylactic usage of fluconazole is supported in patients with recent abdominal surgery and recurrent gastrointestinal perforations or anastomotic leakages. Candida isolation from respiratory secretions alone should never prompt treatment. For the targeted initial treatment of candidaemia, echinocandins are strongly recommended while liposomal amphotericin B and voriconazole are supported with moderate, and fluconazole with marginal strength. Treatment duration for candidaemia should be a minimum of 14 days after the end of candidaemia, which can be determined by one blood culture per day until negativity. Switching to oral treatment after 10 days of intravenous therapy has been safe in stable patients with susceptible Candida species. In candidaemia, removal of indwelling catheters is strongly recommended. If catheters cannot be removed, lipid-based amphotericin B or echinocandins should be preferred over azoles. Transoesophageal echocardiography and fundoscopy should be performed to detect organ involvement. Native valve endocarditis requires surgery within a week, while in prosthetic valve endocarditis, earlier surgery may be beneficial. The antifungal regimen of choice is liposomal amphotericin B +/- flucytosine. In ocular candidiasis, liposomal amphotericin B +/- flucytosine is recommended when the susceptibility of the isolate is unknown, and in susceptible isolates, fluconazole and voriconazole are alternatives. Amphotericin B deoxycholate is not recommended for any indication due to severe side effects.
Resumo:
This report discusses the present status of antifungal therapy and treatment options for candidaemia, considered by experts in the field in Europe. A conference of 26 experts from 13 European countries was held to discuss strategies for the treatment and prevention of invasive candidiasis, with the aim of providing a review on optimal management strategies. Published and unpublished comparative trials on antifungal therapy were analysed and discussed. Commonly asked questions about the management of candidaemia were selected, and possible responses to these questions were discussed. Panellists were then asked to respond to each question by using a touchpad answering system. After the initial conference, the viewpoint document has been reviewed and edited to include new insights and developments since the initial meeting. For many situations, consensus on treatment could not be reached, and the responses indicate that treatment is likely to be modified on a patient-to-patient basis, depending on factors such as degree of illness, prior exposure to azole antifungals, and the presence of potentially antifungal drug-resistant Candida species.