1000 resultados para CA2 TRANSPORT


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gills are the first site of impact by metal ions in contaminated waters. Work on whole gill cells and metal uptake has not been reported before in crustaceans. In this study, gill filaments of the American lobster, Homarus americanus, were dissociated in physiological saline and separated into several cell types on a 30, 40, 50, and 80% sucrose gradient. Cells from each sucrose solution were separately resuspended in physiological saline and incubated in (65)Zn(2+) in order to assess the nature of metal uptake by each cell type. Characteristics of zinc accumulation by each kind of cell were investigated in the presence and absence of 10 mM calcium, variable NaCl concentrations and pH values, and 100 mu M verapamil, nifedipine, and the calcium ionophore A23187. (65)Zn(2+) influxes were hyperbolic functions of zinc concentration (1-1,000 mu M) and followed Michaelis-Menten kinetics. Calcium reduced both apparent zinc binding affinity (K (m)) and maximal transport velocity (J (max)) for 30% sucrose cells, but doubled the apparent maximal transport velocity for 80% sucrose cells. Results suggest that calcium, sodium, and protons enter gill epithelial cells by an endogenous broad-specificity cation channel and trans-stimulate metal uptake by a plasma membrane carrier system. Differences in zinc transport observed between gill epithelial cell types appear related to apparent affinity differences of the transporters in each kind of cell. Low affinity cells from 30% sucrose were inhibited by calcium, while high affinity cells from 80% sucrose were stimulated. (65)Zn(2+) transport was also studied by isolated, intact, gill filament tips. These intact gill fragments generally displayed the same transport properties as did cells from 80% sucrose and provided support for metal uptake processes being an apical phenomenon. A working model for zinc transport by lobster gill cells is presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Atrial natriuretic peptide (ANP) and nitric oxide (NO) are key regulators of ion and water transport in the kidney. Here, we report that these cGMP-elevating hormones stimulate Ca2+ reabsorption via a novel mechanism specifically involving type II cGMP-dependent protein kinase (cGK II). ANP and the NO donor, sodium nitroprusside (SNP), markedly increased Ca2+ uptake in freshly immunodissected rabbit connecting tubules (CNT) and cortical collecting ducts (CCD). Although readily increasing cGMP, ANP and SNP did not affect Ca2+ and Na+ reabsorption in primary cultures of these segments. Immunoblot analysis demonstrated that cGK II, and not cGK I, was present in freshly isolated CNT and CCD but underwent a complete down-regulation during the primary cell culture. However, upon adenoviral reexpression of cGK II in primary cultures, ANP, SNP, and 8-Br-cGMP readily increased Ca2+ reabsorption. In contrast, no cGMP-dependent effect on electrogenic Na+ transport was observed. The membrane localization of cGK II proved to be crucial for its action, because a nonmyristoylated cGK II mutant that was shown to be localized in the cytosol failed to mediate ANP-stimulated Ca2+ transport. The Ca2+-regulatory function of cGK II appeared isotype-specific because no cGMP-mediated increase in Ca2+ transport was observed after expression of the cytosolic cGK Iβ or a membrane-bound cGK II/Iβ chimer. These results demonstrate that ANP- and NO-stimulated Ca2+ reabsorption requires membrane-targeted cGK II.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To assess the availability of Ca2+ in the lumen of the thylakoid membrane that is required to support the assembly of the oxygen-evolving complex of photosystem II, we have investigated the mechanism of 45Ca2+ transport into the lumen of pea (Pisum sativum) thylakoid membranes using silicone-oil centrifugation. Trans-thylakoid Ca2+ transport is dependent on light or, in the dark, on exogenously added ATP. Both light and ATP hydrolysis are coupled to Ca2+ transport through the formation of a transthylakoid pH gradient. The H+-transporting ionophores nigericin/K+ and carbonyl cyanide 3-chlorophenylhydrazone inhibit the transport of Ca2+. Thylakoid membranes are capable of accumulating up to 30 nmol Ca2+ mgâˆ1 chlorophyll from external concentrations of 15 μm over the course of a 15-min reaction. These results are consistent with the presence of an active Ca2+/H+ antiport in the thylakoid membrane. Ca2+ transport across the thylakoid membrane has significant implications for chloroplast and plant Ca2+ homeostasis. We propose a model of chloroplast Ca2+ regulation whereby the activity of the Ca2+/H+ antiporter facilitates the light-dependent uptake of Ca2+ by chloroplasts and reduces stromal Ca2+ levels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The initial rate of Ca2+ movement across the inner-envelope membrane of pea (Pisum sativum L.) chloroplasts was directly measured by stopped-flow spectrofluorometry using membrane vesicles loaded with the Ca2+-sensitive fluorophore fura-2. Calibration of fura-2 fluorescence was achieved by combining a ratiometric method with Ca2+-selective minielectrodes to determine pCa values. The initial rate of Ca2+ influx in predominantly right-side-out inner-envelope membrane vesicles was greater than that in largely inside-out vesicles. Ca2+ movement was stimulated by an inwardly directed electrochemical proton gradient across the membrane vesicles, an effect that was diminished by the addition of valinomycin in the presence of K+. In addition, Ca2+ was shown to move across the membrane vesicles in the presence of a K+ diffusion potential gradient. The potential-stimulated rate of Ca2+ transport was slightly inhibited by diltiazem and greatly inhibited by ruthenium red. Other pharmacological agents such as LaCl3, verapamil, and nifedipine had little or no effect. These results indicate that Ca2+ transport across the chloroplast inner envelope can occur by a potential-stimulated uniport mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To identify and characterize individual Ca2+ pumps, we have expressed an Arabidopsis ECA1 gene encoding an endoplasmic reticulum-type Ca2+-ATPase homolog in the yeast (Saccharomyces cerevisiae) mutant K616. The mutant (pmc1pmr1cnb1) lacks a Golgi and a vacuolar membrane Ca2+ pump and grows very poorly on Ca2+-depleted medium. Membranes isolated from the mutant showed high H+/Ca2+-antiport but no Ca2+-pump activity. Expression of ECA1 in endomembranes increased mutant growth by 10- to 20-fold in Ca2+-depleted medium. 45Ca2+ pumping into vesicles from ECA1 transformants was detected after the H+/Ca2+-antiport activity was eliminated with bafilomycin A1 and gramicidin D. The pump had a high affinity for Ca2+ (Km = 30 nm) and displayed two affinities for ATP (Km of 20 and 235 μm). Cyclopiazonic acid, a specific blocker of animal sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, inhibited Ca2+ transport (50% inhibition dose = 3 nmol/mg protein), but thapsigargin (3 μm) did not. Transport was insensitive to calmodulin. These results suggest that this endoplasmic reticulum-type Ca2+-ATPase could support cell growth in plants as in yeast by maintaining submicromolar levels of cytosolic Ca2+ and replenishing Ca2+ in endomembrane compartments. This study demonstrates that the yeast K616 mutant provides a powerful expression system to study the structure/function relationships of Ca2+ pumps from eukaryotes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trophoblasts of the placenta are the frontline cells involved in communication and exchange of materials between the mother and fetus. Within trophoblasts, calcium signalling proteins are richly expressed. Intracellular free calcium ions are a key second messenger, regulating various cellular activities. Transcellular Ca2+ transport through trophoblasts is essential in fetal skeleton formation. Ryanodine receptors (RyRs) are high conductance cation channels that mediate Ca2+ release from intracellular stores to the cytoplasm. To date, the roles of RyRs in trophoblasts have not been reported. By use of reverse transcription PCR and western blotting, the current study revealed that RyRs are expressed in model trophoblast cell lines (BeWo and JEG-3) and in human first trimester and term placental villi. Immunohistochemistry of human placental sections indicated that both syncytiotrophoblast and cytotrophoblast cell layers were positively stained by antibodies recognising RyRs; likewise, expression of RyR isoforms was also revealed in BeWo and JEG-3 cells by immunofluorescence microscopy. In addition, changes in [Ca2+]i were observed in both BeWo and JEG-3 cells upon application of various RyR agonists and antagonists, using fura-2 fluorescent videomicroscopy. Furthermore, endogenous placental peptide hormones, namely angiotensin II, arginine vasopressin and endothelin 1, were demonstrated to increase [Ca2+]i in BeWo cells, and such increases were suppressed by RyR antagonists and by blockers of the corresponding peptide hormone receptors. These findings indicate that 1) multiple RyR subtypes are expressed in human trophoblasts; 2) functional RyRs in BeWo and JEG-3 cells response to both RyR agonists and antagonists; 3) RyRs in BeWo cells mediate Ca2+ release from intracellular store in response to the indirect stimulation by endogenous peptides. These observations suggest that RyR contributes to trophoblastic cellular Ca2+ homeostasis; trophoblastic RyRs are also involved in the functional regulation of human placenta by coupling to endogenous placental peptide-induced signalling pathways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Malaria is still a major health problem in developing countries. It is caused by the protist parasite Plasmodium, in which proteases are activated during the cell cycle. Ca(2+) is a ubiquitous signalling ion that appears to regulate protease activity through changes in its intracellular concentration. Proteases are crucial to Plasmodium development, but the role of Ca(2+) in their activity is not fully understood. Here we investigated the role of Ca(2+) in protease modulation among rodent Plasmodium spp. Using fluorescence resonance energy transfer (FRET) peptides, we verified protease activity elicited by Ca(2+) from the endoplasmatic reticulum (ER) after stimulation with thapsigargin (a sarco/endoplasmatic reticulum Ca(2+)-ATPase (SERCA) inhibitor) and from acidic compartments by stimulation with nigericin (a K(+)/H(+) exchanger) or monensin (a Na(+)/H(+) exchanger). Intracellular (BAPTA/AM) and extracellular (EGTA) Ca(2+) chelators were used to investigate the role played by Ca(2+) in protease activation. In Plasmodium berghei both EGTA and BAPTA blocked protease activation, whilst in Plasmodium yoelii these compounds caused protease activation. The effects of protease inhibitors on thapsigargin-induced proteolysis also differed between the species. Pepstatin A and phenylmethylsulphonyl fluoride (PMSF) increased thapsigargin-induced proteolysis in P. berghei but decreased it in P. yoelii. Conversely. E64 reduced proteolysis in P. berghei but stimulated it in P. yoelii. The data point out key differences in proteolytic responses to Ca(2+) between species of Plasmodium. (C) 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calcium (Ca) is critical for crustaceans due to their molting cycle and its presence in the carapace as calcium carbonate, apart from the usual functions of Ca, such as cell signalling. Ca transport in Dilocarcinus pagei, a freshwater crab, was studied in isolated cells from hepatopancreas to further characterize Ca transport mechanisms in these crabs. Cells were isolated and loaded with Fluo-3, a calcium fluorescent dye. Three different cell treatments were performed: Group 1 cells were Ca free during cell dissociation, and calcium was present (at 1mM) for fluorescence cell loading and transport experiments (FC); Group 2 cells were calcium free during cell dissociation and for transport experiments, but not during cell loading (LC); and Group 3 cells were Ca free during cell dissociation, cell loading and transport experiments (WC). Intracellular Ca was recorded through time after ATP was added to the cells and ATP caused an increase in Ca efflux within 30s in all cells. WC cells showed the smallest Ca efflux compared to the other cells, probably because it was intracellularly Ca ""depleted"". Vanadate and amiloride decreased the Ca efflux when ATP was added to the cells, while verapamil did not cause any effect in Ca efflux, confirming the presence of a Ca(2+)-ATPase sensitive to vanadate in hepatopancreas of D. pagei. In a different set of experiments, cells were also exposed to a Ca pulse of 1 and 10mM during 180s. 10mM Ca increased intracellular Ca compared to 1mM, and the increase was not recovered during the experimental time. Additionally, Ca influx was reduced by verapamil and amiloride, but not completely. The results suggest that Ca influx probably occurs through an undefined exchanger, apart from Ca channels (verapamil sensitive) and electrogenic 1Na(+)(1H(+))/1 Ca(2+) exchanger (amiloride-sensitive). Similarities between freshwater and seawater crabs, lobsters and crayfish in relation to plasma membrane Ca transporters, although the environment where they live is quite diverse, suggest that universal mechanisms for Ca homeostasis are widespread among crustaceans. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uric acid is a major inducer of inflammation in renal interstitium and may play a role in the progression of renal damage in hyperuricemic subjects with primary nephropathies, renal vascular disease, and essential hypertension. At the same time, UA also acts as a water-soluble scavenger of reactive oxygen species. We evaluated the cellular effects of UA on cultured HMC as a potential interstitial target for abnormally elevated levels in acute and chronic renal disease. Intracellular free Ca2+ ([Ca2+]i) was monitored by microfluorometry of fura 2-loaded cells, while oxidation of intracellularly trapped non-fluorescent 2Â,7Â-dichlorofluorescein diacetate (DCFHDA, 20 uM) was employed to assess the generation of reactive oxygen species during 12-hr incubations with various concentrations of UA or monosodium urate. Fluorescent metabolites of DCFH-DA in the culture media of HMC were detected at 485/530 nm excitation/emission wavelengths, respectively. UA dose-dependently lowered resting [Ca2+]i (from 102±9 nM to 95±3, 57±2, 48±6 nM at 1-100 uM UA, respectively, p <0.05), leaving responses to vasoconstrictors such as angiotensin II unaffected. The effect was not due to Ca2+/H+ exchange upon acidification of the bathing media, as acetate, glutamate, lactate and other organic acids rather increased [Ca2+]i (to max. levels of 497±42 nM with 0.1 mM acetate). The decrease of [Ca2+]i was abolished by raising extracellular Ca2+ and not due to effects on Ca2+ channels or activation of Ca2+-ATPases, since unaffected by thapsigargin. The process rather appeared sensitive to removal of extracellular Na+ in combination with blockers of Na+/Ca2+ exchange, such as 2â,4â-dichlorobenzamil, pointing to a countertransport mechanism. UA dose-dependently prompted the extracellular release of oxidised DCFH (control 37±2 relative fluorescence units (RFU)/ml, 0.1uM 47±2, 1 uM 48±2, 10 uM 51±4, 0.1 mM 53±4; positive control, 10 uM sodium nitroprusside 92±5 RFU/ml, p<0.01). In summary, UA interferes with Ca2+ transport in cultured HMC, triggering oxidative stress which may initiate a sequence of events leading to interstitial injury and possibly amplifying renal vascular damage and/or the progression of chronic disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Na+-Ca2+ exchanger and Ca2+ channel are two major sarcolemmal Ca2+-transporting proteins of cardiac myocytes. Although the Ca2+ channel is effectively regulated by protein kinase A-dependent phosphorylation, no enzymatic regulation of the exchanger protein has been identified as yet. Here we report that in frog ventricular myocytes, isoproterenol down-regulates the Na+-Ca2+ exchanger, independent of intracellular Ca2+ and membrane potential, by activation of the beta-receptor/adenylate-cyclase/cAMP-dependent cascade, resulting in suppression of transmembrane Ca2+ transport via the exchanger and providing for the well-documented contracture-suppressant effect of the hormone on frog heart. The beta-blocker propranolol blocks the isoproterenol effect, whereas forskolin, cAMP, and theophylline mimic it. In the frog heart where contractile Ca2+ is transported primarily by the Na+-Ca2+ exchanger, the beta-agonists' simultaneous enhancement of Ca2+ current, ICa, and suppression of Na+-Ca2+ exchanger current, INa-Ca would enable the myocyte to develop force rapidly at the onset of depolarization (enhancement of ICa) and to decrease Ca2+ influx (suppression of INa-Ca) later in the action potential. This unique adrenergically induced shift in the Ca2+ influx pathways may have evolved in response to paucity of the sarcoplasmic reticulum Ca2+-ATPase/phospholamban complex and absence of significant intracellular Ca2+ release pools in the frog heart.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parvalbumin (PV) is a high affinity Ca(2+)-binding protein found at high concentration in fast-contracting/relaxing skeletal muscle fibers of vertebrates. It has been proposed that PV acts in the process of muscle relaxation by facilitating Ca2+ transport from the myofibrils to the sarcoplasmic reticulum. However, on the basis of metal-binding kinetics of PV in vitro, this hypothesis has been challenged. To investigate the function of PV in skeletal muscle fibers, direct gene transfer was applied in normal and regenerating rat soleus muscles which do not synthesize detectable amounts of PV. Two weeks after in vivo transfection with PV cDNA, considerable levels of PV mRNA and protein were detected in normal muscle, and even higher amounts were detected in regenerating muscle. Twitch half-relaxation time was significantly shortened in a dose-dependent way in transfected muscles, while contraction time remained unaltered. The observed shortening of half-relaxation time is due to PV and its ability to bind Ca2+, because a mutant protein lacking Ca(2+)-binding capacity did not promote any change in physiology. These results directly demonstrate the physiological function of PV as a relaxing factor in mammalian skeletal muscle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laboratory culture experiments were conducted to determine effects of seawater carbonate ion concentration ([CO32-]), and thereby calcite saturation state, on Mg and Sr incorporation into calcite of two species of shallow-water benthic foraminifera: Ammonia tepida and Heterostegina depressa. Impact on Mg and Sr incorporation by increased seawater [CO32-] and thereby higher calcite saturation state, is absent in either species. Comparison to results from a similar culturing experiment, in which calcite saturation state was varied as a function of [Ca2+], reveals that saturation state affects incorporation of Mg and Sr through calcium- rather than carbonate availability. The similarity in response by both species is surprising since the average Mg/Ca ratio is ~ 70 times higher in H. depressa than in A. tepida. Furthermore, these results suggest that the ions involved in biomineralization (i.e. Ca2+ and DIC) are processed by separate cellular transport mechanisms. The similar response of Mg and Sr incorporation in this study suggests that only differences in the Ca2+ transport mechanism affect divalent cation partitioning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Sr/Ca of aragonitic coral skeletons is a commonly used palaeothermometer. However skeletal Sr/Ca is typically dominated by weekly-monthly oscillations which do not reflect temperature or seawater composition and the origins of which are currently unknown. To test the impact of transcellular Ca2+ transport processes on skeletal Sr/Ca, colonies of the branching coral, Pocillopora damicornis, were cultured in the presence of inhibitors of Ca-ATPase (ruthenium red) and Ca channels (verapamil hydrochloride). The photosynthesis, respiration and calcification rates of the colonies were monitored throughout the experiment. The skeleton deposited in the presence of the inhibitors was identified (by 42Ca spike) and analysed for Sr/Ca and Mg/Ca by secondary ion mass spectrometry. The Sr/Ca of the aragonite deposited in the presence of either of the inhibitors was not significantly different from that of the solvent (dimethyl sulfoxide) control, although the coral calcification rate was reduced by up to 66% and 73% in the ruthenium red and verapamil treatments, respectively. The typical precision (95% confidence limits) of mean Sr/Ca determinations within any treatment was <±1% and differences in skeletal Sr/Ca between treatments were correspondingly small. Either Ca-ATPase and Ca channels transport Sr2+ and Ca2+ in virtually the same ratio in which they are present in seawater or transcellular processes contribute little Ca2+ to the skeleton and most Ca is derived from seawater transported directly to the calcification site. Variations in the activities of Ca-ATPase and Ca-channels are not responsible for the weekly-monthly Sr/Ca oscillations observed in skeletal chronologies, assuming that the specificities of Ca transcellular transport processes are similar between coral genera.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lutein (3,3'-dihydroxy alpha-carotene), a xanthophyll present in plant chloroplasts, increases the permeability of phospholipid vesicles to Ca2+, even though the pigment does not bind the metal ion. Energy-dependent uptake of Ca2+ by mitochondria is inhibited by lutein, which permits a rapid efflux of the ion from Ca2+-loaded mitochondria. These results are consistent with the view that the deleterious action of lutein on mitochondrial oxidative phosphorylation results from its destabilizing action on membrane structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have examined the requirement for Ca2+ in the signaling and trafficking pathways involved in insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Chelation of intracellular Ca2+, using 1,2-bis (o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxy- methyl) ester (BAPTA-AM), resulted in &gt;95% inhibition of insulin-stimulated glucose uptake. The calmodulin antagonist, W13, inhibited insulin-stimulated glucose uptake by 60%. Both BAPTA-AM and W13 inhibited Akt phosphorylation by 70-75%. However, analysis of insulin-dose response curves indicated that this inhibition was not sufficient to explain the effects of BAPTA-AM and W13 on glucose uptake. BAPTA-AM inhibited insulin-stimulated translocation of GLUT4 by 50%, as determined by plasma membrane lawn assay and subcellular fractionation. In contrast, the insulin-stimulated appearance of HA-tagged GLUT4 at the cell surface, as measured by surface binding, was blocked by BAPTA-AM. While the ionophores A23187 or ionomycin prevented the inhibition of Akt phosphorylation and GLUT4 translocation by BAPTA-AM, they did not overcome the inhibition of glucose transport. Moreover, glucose uptake of cells pretreated with insulin followed by rapid cooling to 4 &deg;C, to promote cell surface expression of GLUT4 and prevent subsequent endocytosis, was inhibited specifically by BAPTA-AM. This indicates that inhibition of glucose uptake by BAPTA-AM is independent of both trafficking and signal transduction. These data indicate that Ca2+ is involved in at least two different steps of the insulin-dependent recruitment of GLUT4 to the plasma membrane. One involves the translocation step. The second involves the fusion of GLUT4 vesicles with the plasma membrane. These data are consistent with the hypothesis that Ca2+/calmodulin plays a fundamental role in eukaryotic vesicle docking and fusion. Finally, BAPTA-AM may inhibit the activity of the facilitative transporters by binding directly to the transporter itself. <br />