915 resultados para CA2 HOMEOSTASIS
Peroxynitrite mediates disruption of Ca2+ homeostasis by carbon monoxide via Ca2+ ATPase degradation
Resumo:
CO stimulates formation of NO and reactive oxygen species which, via peroxynitrite formation, inhibit Ca(2+) extrusion via PMCA, leading to disruption of Ca(2+) signaling. We propose this contributes to the neurological damage associated with CO toxicity.
Resumo:
Inhibition of the mitochondrial Na+/Ca2+ exchanger (NCLX) by CGP37157 is protective in models of neuronal injury that involve disruption of intracellular Ca2+ homeostasis. However, the Ca2+ signaling pathways and stores underlying neuroprotection by that inhibitor are not well defined. In the present study, we analyzed how intracellular Ca2+ levels are modulated by CGP37157 (10 mu M) during NMDA insults in primary cultures of rat cortical neurons. We initially assessed the presence of NCLX in mitochondria of cultured neurons by immunolabeling, and subsequently, we analyzed the effects of CGP37157 on neuronal Ca2+ homeostasis using cameleon-based mitochondrial Ca2+ and cytosolic Ca2+ ([Ca2+](i)) live imaging. We observed that NCLX-driven mitochondrial Ca2+ exchange occurs in cortical neurons under basal conditions as CGP37157 induced a decrease in [Ca-2](i) concomitant with a Ca2+ accumulation inside the mitochondria. In turn, CGP37157 also inhibited mitochondrial Ca2+ efflux after the stimulation of acetylcholine receptors. In contrast, CGP37157 strongly prevented depolarization-induced [Ca2+](i) increase by blocking voltage-gated Ca2+ channels (VGCCs), whereas it did not induce depletion of ER Ca2+ stores. Moreover, mitochondrial Ca2+ overload was reduced as a consequence of diminished Ca2+ entry through VGCCs. The decrease in cytosolic and mitochondrial Ca2+ overload by CGP37157 resulted in a reduction of excitotoxic mitochondrial damage, characterized here by a reduction in mitochondrial membrane depolarization, oxidative stress and calpain activation. In summary, our results provide evidence that during excitotoxicity CGP37157 modulates cytosolic and mitochondrial Ca2+ dynamics that leads to attenuation of NMDA-induced mitochondrial dysfunction and neuronal cell death by blocking VGCCs.
Resumo:
Parkinson's disease (PD) is characterized in part by the presence of alpha-synuclein (alpha-syn) rich intracellular inclusions (Lewy bodies). Mutations and multiplication of the alpha-synuclein gene (SNCA) are associated with familial PD. Since Ca2+ dyshomeostasis may play an important role in the pathogenesis of PD, we used fluorimetry in fura-2 loaded SH-SY5Y cells to monitor Ca2+ homeostasis in cells stably transfected with either wild-type alpha-syn, the A53T mutant form, the S129D phosphomimetic mutant or with empty vector (which served as control). Voltage-gated Ca2+ influx evoked by exposure of cells to 50 mM K+ was enhanced in cells expressing all three forms of alpha-syn, an effect which was due specifically to increased Ca2+ entry via L-type Ca2+ channels. Mobilization of Ca2+ by muscarine was not strikingly modified by any of the alpha-syn forms, but they all reduced capacitative Ca2+ entry following store depletion caused either by muscarine or thapsigargin. Emptying of stores with cyclopiazonic acid caused similar rises of [Ca2+](i) in all cells tested (with the exception of the S129D mutant), and mitochondrial Ca2+ content was unaffected by any form of alpha-synuclein. However, only WT alpha-syn transfected cells displayed significantly impaired viability. Our findings suggest that alpha-syn regulates Ca2+ entry pathways and, consequently, that abnormal alpha-syn levels may promote neuronal damage through dysregulation of Ca2+ homeostasis.
Resumo:
Ferrao FM, Lara LS, Axelband F, Dias J, Carmona AK, Reis RI, Costa-Neto CM, Vieyra A, Lowe J. Exposure of luminal membranes of LLC-PK1 cells to ANG II induces dimerization of AT(1)/AT(2) receptors to activate SERCA and to promote Ca2+ mobilization. Am J Physiol Renal Physiol 302: F875-F883, 2012. First published January 4, 2012; doi:10.1152/ajprenal.00381.2011.-ANG II is secreted into the lumens of proximal tubules where it is also synthesized, thus increasing the local concentration of the peptide to levels of potential physiological relevance. In the present work, we studied the effect of ANG II via the luminal membranes of LLC-PK1 cells on Ca2+-ATPase of the sarco(endo) plasmic reticulum (SERCA) and plasma membrane (PMCA). ANG II (at concentrations found in the lumen) stimulated rapid (30 s) and persistent (30 min) SERCA activity by more than 100% and increased Ca2+ mobilization. Pretreatment with ANG II for 30 min enhanced the ANG II-induced Ca2+ spark, demonstrating a positively self-sustained stimulus of Ca2+ mobilization by ANG II. ANG II in the medium facing the luminal side of the cells decreased with time with no formation of metabolites, indicating peptide internalization. ANG II increased heterodimerization of AT(1) and AT(2) receptors by 140%, and either losartan or PD123319 completely blocked the stimulation of SERCA by ANG II. Using the PLC inhibitor U73122, PMA, and calphostin C, it was possible to demonstrate the involvement of a PLC -> DAG(PMA)-> PKC pathway in the stimulation of SERCA by ANG II with no effect on PMCA. We conclude that ANG II triggers SERCA activation via the luminal membrane, increasing the Ca2+ stock in the reticulum to ensure a more efficient subsequent mobilization of Ca2+. This first report on the regulation of SERCA activity by ANG II shows a new mechanism for Ca2+ homeostasis in renal cells and also for regulation of Ca2+-modulated fluid reabsorption in proximal tubules.
Resumo:
The trp gene of Drosophila encodes a subunit of a class of Ca2+-selective light-activated channels that carry the bulk of the phototransduction current. Transient receptor potential (TRP) homologs have been identified throughout animal phylogeny. In vertebrates, TRP-related channels have been suggested to mediate store-operated Ca2+ entry, which is important in Ca2+ homeostasis in a wide variety of cell types. However, the mechanisms of activation and regulation of the TRP channel are not known. Here, we report on the Drosophila inaF gene, which encodes a highly eye-enriched protein, INAF, that appears to be required for TRP channel function. A null mutation in this gene significantly reduces the amount of the TRP protein and, in addition, specifically affects the TRP channel function so as to nearly shut down its activity. The inaF mutation also dramatically suppresses the severe degeneration caused by a constitutively active mutation in the trp gene. Although the reduction in the amount of the TRP protein may contribute to these phenotypes, several lines of evidence support the view that inaF mutations also more directly affect the TRP channel function, suggesting that the INAF protein may have a regulatory role in the channel function.
Resumo:
To assess the availability of Ca2+ in the lumen of the thylakoid membrane that is required to support the assembly of the oxygen-evolving complex of photosystem II, we have investigated the mechanism of 45Ca2+ transport into the lumen of pea (Pisum sativum) thylakoid membranes using silicone-oil centrifugation. Trans-thylakoid Ca2+ transport is dependent on light or, in the dark, on exogenously added ATP. Both light and ATP hydrolysis are coupled to Ca2+ transport through the formation of a transthylakoid pH gradient. The H+-transporting ionophores nigericin/K+ and carbonyl cyanide 3-chlorophenylhydrazone inhibit the transport of Ca2+. Thylakoid membranes are capable of accumulating up to 30 nmol Ca2+ mg1 chlorophyll from external concentrations of 15 m over the course of a 15-min reaction. These results are consistent with the presence of an active Ca2+/H+ antiport in the thylakoid membrane. Ca2+ transport across the thylakoid membrane has significant implications for chloroplast and plant Ca2+ homeostasis. We propose a model of chloroplast Ca2+ regulation whereby the activity of the Ca2+/H+ antiporter facilitates the light-dependent uptake of Ca2+ by chloroplasts and reduces stromal Ca2+ levels.
Resumo:
Specific targeting of the recombinant, Ca2+ -sensitive photoprotein, aequorin to intracellular organelles has provided new insights into the mechanisms of intracellular Ca2+ homeostasis. When applied to small mammalian cells, a major limitation of this technique has been the need to average the signal over a large number of cells. This prevents the identification of inter- or intracellular heterogeneities. Here we describe the imaging in single mammalian cells (CHO.T) of [Ca2+] with recombinant chimeric aequorin targeted to mitochondria. This was achieved by optimizing expression of the protein through intranuclear injection of cDNA and through the use of a charge-coupled device camera fitted with a dual microchannel plate intensifier. This approach allows accurate quantitation of the kinetics and extent of the large changes in mitochondrial matrix [Ca2+] ([Ca2+](m)) that follow receptor stimulation and reveal different behaviors of mitochondrial populations within individual cells. The technique is compared with measurements of [Ca2+](m) using the fluorescent indicator, rhod2. Comparison of [Ca2+](m) with the activity of the Ca2+ -sensitive matrix enzyme, pyruvate dehydrogenase (PDH), reveals that this enzyme is a target of the matrix [Ca2+] changes. Peak [Ca2+](m) values following receptor stimulation are in excess of those necessary for full activation of PDH in situ, but may be necessary for the activation of other mitochondrial dehydrogenases. Finally, the data suggest that the complex regulation of PDH activity by a phosphorylation-dephosphorylation cycle may provide a means by which changes in the frequency of cytosolic (and hence mitochondrial) [Ca2+] oscillations can be decoded by mitochondria.
Resumo:
Heart failure is a complex disorder, characterized by activation of the sympathetic nervous system, leading to dysregulated Ca2+ homeostasis in cardiac myocytes and tissue remodeling. In a variety of diseases, cardiac malfunction is associated with aberrant fluxes of Ca2+ across both the surface membrane and the internal Ca2+ store, the sarcoplasmic reticulum (SR). One prominent hypothesis residues is that in heart failure, the activity of the ryanodine receptor (RyR2) Ca2+ release channel in the SR is increased due to excess phosphorylation and that this contributes to excess SR Ca2+ leak in diastole, reduced SR Ca2+ load and decreased contractility (Huke & Bers, 2008). There is controversy over which serine residues in RyR2 are hyperphosphorylated in animal models of heart failure and whether this is via the CaMKII or the PKA-linked signaling pathway. S2808, S2814 and S2030 in RyR2 have been variously claimed to be hyperphosphorylated. Our aim was to examine the degree of phosphorylation of these residues in RyR2 from failing human hearts. The use of human tissue was approved by the Human Research Ethics Committee, The Prince Charles Hospital, EC28114. Left ventricular tissue samples were obtained from an explanted heart of a patient with endstage heart failure (Emery Dreifuss Muscular Dystrophy with cardiomyopathy) and non-failing tissue was from a patient with cystic fibrosis undergoing heart-lung transplantation with no history of heart disease. SR vesicles were prepared as described by Laver et al. (1995) and examined with SDS-Page and Western Blot. Transferred proteins were probed with antibodies to detect total protein phosphorylation, phosphorylation of RyR2 serine residues S2808, S2814, S2030 and for the key proteins calsequestrin, triadin, junctin and FKBP12.6. To avoid membrane stripping artifact, each membrane was exposed to one phosphorylation-specific antibody and signal densities quantified using Bio-Rad Quantity One software. We found no distinguishable difference between failing and healthy hearts in the protein expression levels of RyR2, triadin, junctin or calsequestrin. We found an expected upregulation of total RyR2 phosphorylation in the failing heart sample, compared to a matched amount of RyR2 (quantified using densiometry) in healthy heart. Probing with antibodies detecting only the phosphorylated form of the specific RyR2 residues showed that the increase in total RyR2 phosphorylation in the failing heart was due to hyperphosphorylation of S2808 and S2814. We found that S2030 phosphorylation levels were unchanged in human heart failure. Interestingly, we found that S2030 has a basal level of phosphorylation in the healthy human heart, different from the absence of basal phosphorylation recently reported in rodent heart (Huke & Bers, 2008). Finally, preliminary results indicate that less FKBP 12.6 is associated with RyR2 in the failing heart, possibly as a consequence of PKA activation. In conclusion, residues S2808 and S2814 are hyperphosphorylated in human heart failure, presumably due to upregulation of the CaMKII and/or PKA signaling pathway as a result of chronic activation of the sympathetic nervous system. Such changes in RyR2 phosphorylation are believed to contribute to the leaky RyR2 phenotype associated with heart failure, which increases the incidence of arrhythmia and contributes to the severely impaired contractile performance of the failing heart. Huke S & Bers DM. (2008). Ryanodine receptor phosphorylation at serine 2030, 2808 and 2814 in rat cardiomyocytes. Biochemical and Biophysical Research Communications 376, 80-85. Laver DR, Roden LD, Ahern GP, Eager KR, Junankar PR & Dulhunty AF. (1995). Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. Journal of Membrane Biology 147, 7-22. Proceedings
Resumo:
<p>Mitochondria can remodel their membranes by fusing or dividing. These processes are required for the proper development and viability of multicellular organisms. At the cellular level, fusion is important for mitochondrial Ca2+ homeostasis, mitochondrial DNA maintenance, mitochondrial membrane potential, and respiration. Mitochondrial division, which is better known as fission, is important for apoptosis, mitophagy, and for the proper allocation of mitochondria to daughter cells during cellular division.</p> <p>The functions of proteins involved in fission have been best characterized in the yeast model organism Sarccharomyces cerevisiae. Mitochondrial fission in mammals has some similarities. In both systems, a cytosolic dynamin-like protein, called Dnm1 in yeast and Drp1 in mammals, must be recruited to the mitochondrial surface and polymerized to promote membrane division. Recruitment of yeast Dnm1 requires only one mitochondrial outer membrane protein, named Fis1. Fis1 is conserved in mammals, but its importance for Drp1 recruitment is minor. In mammals, three other receptor proteinsMff, MiD49, and MiD51play a major role in recruiting Drp1 to mitochondria. Why mammals require three additional receptors, and whether they function together or separately, are fundamental questions for understanding the mechanism of mitochondrial fission in mammals.</p> <p>We have determined that Mff, MiD49, or MiD51 can function independently of one another to recruit Drp1 to mitochondria. Fis1 plays a minor role in Drp1 recruitment, suggesting that the emergence of these additional receptors has replaced the system used by yeast. Additionally, we found that Fis1/Mff and the MiDs regulate Drp1 activity differentially. Fis1 and Mff promote constitutive mitochondrial fission, whereas the MiDs activate recruited Drp1 only during loss of respiration. </p> <p>To better understand the function of the MiDs, we have determined the atomic structure of the cytoplasmic domain of MiD51, and performed a structure-function analysis of MiD49 based on its homology to MiD51. MiD51 adopts a nucleotidyl transferase fold, and binds ADP as a co-factor that is essential for its function. Both MiDs contain a loop segment that is not present in other nucleotidyl transferase proteins, and this loop is used to interact with Drp1 and to recruit it to mitochondria.</p>
Resumo:
Calreticulin (CRT), as an endoplasmic reticulum luminal resident protein, plays important roles in Ca2+ homeostasis and molecular chaperoning. CRT on the surface of the cell can modulate cell adhesion, phagocytosis and integrin-dependent Ca2+ signaling. The full length cDNA of calreticulin (FcCRT) was cloned from Chinese shrimp Fenneropenaeus chinensis. It consists of 1672 by with an open reading frame of 1221 bp, encoding 406 amino acids. This is the first reported cDNA sequence of calreticulin in Crustacea. The deduced amino acid sequence of FcCRT showed high identity with those of Bombyx mori (88%), Drosophila melanogaster (83%), Mus musculus (82%) and Homo sapiens (82%). Highest expression of FcCRT was detected in ovary by Northern blot and in situ hybridization. Different mRNA levels of FcCRT were detected at various molting stages. Expression of FcCRT was induced significantly after 3 h of heat shock treatment, reached the maximum at 4 h and dropped after that. Differential expression profiles of FcCRT were observed in hepatopancreas and haemocytes when shrimp were challenged by white spot syndrome virus (WSSV). From the above results, we inferred that FcCRT might play important roles in Ca2+ homeostasis, chaperoning and immune function in shrimp. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Trophoblasts of the placenta are the frontline cells involved in communication and exchange of materials between the mother and fetus. Within trophoblasts, calcium signalling proteins are richly expressed. Intracellular free calcium ions are a key second messenger, regulating various cellular activities. Transcellular Ca2+ transport through trophoblasts is essential in fetal skeleton formation. Ryanodine receptors (RyRs) are high conductance cation channels that mediate Ca2+ release from intracellular stores to the cytoplasm. To date, the roles of RyRs in trophoblasts have not been reported. By use of reverse transcription PCR and western blotting, the current study revealed that RyRs are expressed in model trophoblast cell lines (BeWo and JEG-3) and in human first trimester and term placental villi. Immunohistochemistry of human placental sections indicated that both syncytiotrophoblast and cytotrophoblast cell layers were positively stained by antibodies recognising RyRs; likewise, expression of RyR isoforms was also revealed in BeWo and JEG-3 cells by immunofluorescence microscopy. In addition, changes in [Ca2+]i were observed in both BeWo and JEG-3 cells upon application of various RyR agonists and antagonists, using fura-2 fluorescent videomicroscopy. Furthermore, endogenous placental peptide hormones, namely angiotensin II, arginine vasopressin and endothelin 1, were demonstrated to increase [Ca2+]i in BeWo cells, and such increases were suppressed by RyR antagonists and by blockers of the corresponding peptide hormone receptors. These findings indicate that 1) multiple RyR subtypes are expressed in human trophoblasts; 2) functional RyRs in BeWo and JEG-3 cells response to both RyR agonists and antagonists; 3) RyRs in BeWo cells mediate Ca2+ release from intracellular store in response to the indirect stimulation by endogenous peptides. These observations suggest that RyR contributes to trophoblastic cellular Ca2+ homeostasis; trophoblastic RyRs are also involved in the functional regulation of human placenta by coupling to endogenous placental peptide-induced signalling pathways.
Resumo:
Tese de mestrado, Neurocincias, Faculdade de Medicina, Universidade de Lisboa, 2016