960 resultados para C-terminal Fragment
Resumo:
OBJECTIVE: To observe the chronic effects of human growth hormone (hGH) and AOD9604 (a C-terminal fragment of hGH) on body weight, energy balance, and substrate oxidation rates in obese (ob/ob) and lean C57BL/6Jmice. In vitro assays were used to confirm whether the effects of AOD9604 are mediated through the hGH receptor, and if this peptide is capable of cell proliferation via the hGH receptor. METHOD: Obese and lean mice were treated with hGH, AOD or saline for 14 days using mini-osmotic pumps. Body weight, caloric intake, resting energy expenditure, fat oxidation, glucose oxidation, and plasma glucose, insulin and glycerol were measured before and after treatment. BaF-BO3 cells transfected with the hGH receptor were used to measure in Vitro I-125-hGH receptor binding and cell proliferation. RESULTS: Both hGH and AOD significantly reduced body weight gain in obese mice. This was associated with increased in vivo fat oxidation and increased plasma glycerol levels (an index of lipolysis). Unlike hGH, however, AOD9604 did not induce hyperglycaemia or reduce insulin secretion. AOD9604 does not compete for the hGH receptor and nor does it induce cell proliferation, unlike hGH. CONCLUSIONS: Both hGH and its C-terminal fragment reduce body weight gain, increase fat oxidation, and stimulate lipolysis in obese mice, yet AOD9604 does not interact with the hGH receptor. Thus, the concept of hGH behaving as a pro-hormone is further confirmed. This data shows that fragments of hGH can act in a manner novel to traditional hGH-stimulated pathways.
Resumo:
Escherichia coli DnaK acts as a molecular chaperone through its ATP-regulated binding and release of polypeptide substrates. Overexpressing a C-terminal fragment (CTF) of DnaK (Gly-384 to Lys-638) containing the polypeptide substrate binding domain is lethal in wild-type E. coli. This dominant-negative phenotype may result from the nonproductive binding of CTF to cellular polypeptide targets of DnaK. Mutations affecting DnaK substrate binding were identified by selecting noncytotoxic CTF mutants followed by in vitro screening. The clustering of such mutations in the three-dimensional structure of CTF suggests the model that loops L1,2 and L4,5 form a rigid core structure critical for interactions with substrate.
Resumo:
After vascular injury, a cascade of serine protease activations leads to the conversion of the soluble fibrinogen molecule into fibrin. The fibrin monomers then polymerize spontaneously and noncovalently to form a fibrin gel. The primary interaction of this polymerization reaction is between the newly exposed N-terminal Gly-Pro-Arg sequence of the α chain of one fibrin molecule and the C-terminal region of a γ chain of an adjacent fibrin(ogen) molecule. In this report, the polymerization pocket has been identified by determining the crystal structure of a 30-kDa C-terminal fragment of the fibrin(ogen) γ chain complexed with the peptide Gly-Pro-Arg-Pro. This peptide mimics the N terminus of the α chain of fibrin. The conformational change in the protein upon binding the peptide is subtle, with electrostatic interactions primarily mediating the association. This is consistent with biophysical experiments carried out over the last 50 years on this fundamental polymerization reaction.
Resumo:
In a recent study, we demonstrated the immunogenic properties of a new malaria vaccine polypeptide based on a 19 kDa C-terminal fragment of the merozoite surface protein-1 (MSP1(19)) from Plasmodium vivax and an innate immunity agonist, the Salmonella enterica serovar Typhimurium flagellin (FliC). Herein, we tested whether the same strategy, based on the MSP1(19) component of the deadly malaria parasite Plasmodium falciparum, could also generate a fusion polypeptide with enhanced immunogenicity. The His(6)FliC-MSP1(19) fusion protein was expressed from a recombinant Escherichia coil and showed preserved in vitro TLR5-binding activity. In contrast to animals injected with His(6)MSP1(19), mice subcutaneously immunised with the recombinant His6FliC-MSP1(19) developed strong MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass. Incorporation of other adjuvants, such as CpG ODN 1826, complete and incomplete Freund`s adjuvants or Quil-A, improved the IgG responses after the second, but not the third, immunising dose. It also resulted in a more balanced IgG subclass response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response, as determined by the detection of antigen-specific interferon-gamma secretion by immune spleen cells. MSP(19)-specific antibodies recognised not only the recombinant protein, but also the native protein expressed on the surface of P. falciparum parasites. Finally, sera from rabbits immunised with the fusion protein alone inhibited the in vitro growth of three different P. falciparum strains. In summary, these results extend our previous observations and further demonstrate that fusion of the innate immunity agonist FliC to Plasmodium antigens is a promising alternative to improve their immunogenicity. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The x-ray structure of a C-terminal fragment of the RAP74 subunit of human transcription factor (TF) IIF has been determined at 1.02-Å resolution. The α/β structure is strikingly similar to the globular domain of linker histone H5 and the DNA-binding domain of hepatocyte nuclear factor 3γ (HNF-3γ), making it a winged-helix protein. The surface electrostatic properties of this compact domain differ significantly from those of bona fide winged-helix transcription factors (HNF-3γ and RFX1) and from the winged-helix domains found within the RAP30 subunit of TFIIF and the β subunit of TFIIE. RAP74 has been shown to interact with the TFIIF-associated C-terminal domain phosphatase FCP1, and a putative phosphatase binding site has been identified within the RAP74 winged-helix domain.
Resumo:
AIMS Skeletal muscle wasting affects 20% of patients with chronic heart failure and has serious implications for their activities of daily living. Assessment of muscle wasting is technically challenging. C-terminal agrin-fragment (CAF), a breakdown product of the synaptically located protein agrin, has shown early promise as biomarker of muscle wasting. We sought to investigate the diagnostic properties of CAF in muscle wasting among patients with heart failure. METHODS AND RESULTS We assessed serum CAF levels in 196 patients who participated in the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Muscle wasting was identified using dual-energy X-ray absorptiometry (DEXA) in 38 patients (19.4%). Patients with muscle wasting demonstrated higher CAF values than those without (125.1 ± 59.5 pmol/L vs. 103.8 ± 42.9 pmol/L, P = 0.01). Using receiver operating characteristics (ROC), we calculated the optimal CAF value to identify patients with muscle wasting as >87.5 pmol/L, which had a sensitivity of 78.9% and a specificity of 43.7%. The area under the ROC curve was 0.63 (95% confidence interval 0.56-0.70). Using simple regression, we found that serum CAF was associated with handgrip (R = - 0.17, P = 0.03) and quadriceps strength (R = - 0.31, P < 0.0001), peak oxygen consumption (R = - 0.5, P < 0.0001), 6-min walk distance (R = - 0.32, P < 0.0001), and gait speed (R = - 0.2, P = 0.001), as well as with parameters of kidney and liver function, iron metabolism and storage. CONCLUSION CAF shows good sensitivity for the detection of skeletal muscle wasting in patients with heart failure. Its assessment may be useful to identify patients who should undergo additional testing, such as detailed body composition analysis. As no other biomarker is currently available, further investigation is warranted.
Resumo:
Antibodies have the potential to be therapeutic reagents for malaria. Here we describe the production of a novel phage antibody display library against the C-terminal 19 kDa region of the Plasmodium yoelii YM merozoite surface protein-1 (MSP1(19)). In vivo studies against homologous lethal malaria challenge show an anti-parasite effect in a dose dependent manner, and analysis by plasmon resonance indicates binding to the antigen is comparable to the binding of a protective monoclonal antibody. The data support the lack of a need for any antibody Fc-related function and hold great significance for the development of a therapeutic reagent for malaria. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
OBJECTIVE: Our laboratory has previously established in vitro that a caspase-generated RasGAP NH(2)-terminal moiety, called fragment N, potently protects cells, including insulinomas, from apoptotic stress. We aimed to determine whether fragment N can increase the resistance of pancreatic beta-cells in a physiological setting. RESEARCH DESIGN AND METHODS: A mouse line, called rat insulin promoter (RIP)-N, was generated that bears a transgene containing the rat insulin promoter followed by the cDNA-encoding fragment N. The histology, functionality, and resistance to stress of RIP-N islets were then assessed. RESULTS: Pancreatic beta-cells of RIP-N mice express fragment N, activate Akt, and block nuclear factor kappaB activity without affecting islet cell proliferation or the morphology and cellular composition of islets. Intraperitoneal glucose tolerance tests revealed that RIP-N mice control their glycemia similarly as wild-type mice throughout their lifespan. Moreover, islets isolated from RIP-N mice showed normal glucose-induced insulin secretory capacities. They, however, displayed increased resistance to apoptosis induced by a series of stresses including inflammatory cytokines, fatty acids, and hyperglycemia. RIP-N mice were also protected from multiple low-dose streptozotocin-induced diabetes, and this was associated with reduced in vivo beta-cell apoptosis. CONCLUSIONS: Fragment N efficiently increases the overall resistance of beta-cells to noxious stimuli without interfering with the physiological functions of the cells. Fragment N and the pathway it regulates represent, therefore, a potential target for the development of antidiabetes tools.
Resumo:
A large number of gene products that are enriched in the striatum have ill-defined functions, although they may have key roles in age-dependent neurodegenerative diseases affecting the striatum, especially Huntington disease (HD). In the present study, we focused on Abhd11os, (called ABHD11-AS1 in human) which is a putative long noncoding RNA (lncRNA) whose expression is enriched in the mouse striatum. We confirm that despite the presence of 2 small open reading frames (ORFs) in its sequence, Abhd11os is not translated into a detectable peptide in living cells. We demonstrate that Abhd11os levels are markedly reduced in different mouse models of HD. We performed in vivo experiments in mice using lentiviral vectors encoding either Abhd11os or a small hairpin RNA targeting Abhd11os. Results show that Abhd11os overexpression produces neuroprotection against an N-terminal fragment of mutant huntingtin, whereas Abhd11os knockdown is protoxic. These novel results indicate that the loss lncRNA Abhd11os likely contribute to striatal vulnerability in HD. Our study emphasizes that lncRNA may play crucial roles in neurodegenerative diseases.
Resumo:
We investigated the long-lasting effect of peripheral injection of the neuropeptide substance P (SP) and of some N- or C-terminal SP fragments (SPN and SPC, respectively) on retention test performance of avoidance learning. Male Wistar rats (220 to 280 g) were trained in an inhibitory step-down avoidance task and tested 24 h or 21 days later. Immediately after the training trial rats received an intraperitoneal injection of SP (50 µg/kg), SPN 1-7 (167 µg/kg) or SPC 7-11 (134 µg/kg). Control groups were injected with vehicle or SP 5 h after the training trial. The immediate post-training administration of SP and SPN, but not SPC, facilitated avoidance behavior in rats tested 24 h or 21 days later, i.e., the retention test latencies of the SP and SPN groups were significantly longer (P<0.05, Mann-Whitney U-test) during both training-test intervals. These observations suggest that the memory-enhancing effect of SP is long-lasting and that the amino acid sequence responsible for this effect is encoded by its N-terminal part
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Endotoxin triggers the subarachnoid inflammation of gram-negative meningitis. This study examined the ability of a recombinant N-terminal fragment of bactericidal/permeability-increasing protein (rBPI23) to block endotoxin-induced meningitis in rabbits. Intracisternal (ic) injection of 10-20 ng of meningococcal endotoxin induced high cerebrospinal fluid (CSF) concentrations of tumor necrosis factor (TNF) and CSF pleocytosis and increased CSF lactate concentrations. ic administration of rBPI23 significantly reduced meningococcal endotoxin-induced TNF release into CSF (P < .005), lactate concentrations (P < .001), and CSF white blood cell counts (P < .01). No such effect was observed in animals receiving intravenous rBPI23. Concentrations of rBPI23 in CSF were high after ic administration but low or undetectable after systemic administration. Thus, high concentrations of rBPI23 can effectively neutralize meningococcal endotoxin in CSF, but low CSF concentrations after systemic administration currently limit its potential usefulness as adjunctive drug treatment in gram-negative meningitis.
Resumo:
The host response to Gram-negative bacterial infection is influenced by two homologous lipopolysaccharide (LPS)-interactive proteins, LPS-binding protein (LBP) and the bacteridical/permeability-increasing protein (BPI). Both proteins bind LPS via their N-terminal domains but produce profoundly different effects: BPI and a bioactive N-terminal fragment BPI-21 exert a selective and potent antibacterial effect upon Gram-negative bacteria and suppress LPS bioactivity whereas LBP is not toxic toward Gram-negative bacteria and potentiates LPS bioactivity. The latter effect of LBP requires the C-terminal domain for delivery of LPS to CD14, so we postulated that the C-terminal region of BPI may serve a similar delivery function but to distinct targets. LBP, holoBPI, BPI-21, and LBP/BPI chimeras were compared for their ability to promote uptake by human phagocytes of an encapsulated, phagocytosis-resistant strain of Escherichia coli. We show that only bacteria preincubated with holoBPI are ingested by neutrophils and monocytes. These findings suggest that, when extracellular holoBPI is bound via its N-terminal domain to Gram-negative bacteria, the C-terminal domain promotes bacterial attachment to neutrophils and monocytes, leading to phagocytosis. Therefore, analogous to the role of the C-terminal domain of LBP in delivery of LPS to CD14, the C-terminal domain of BPI may fulfill a similar function in BPI-specific disposal pathways for Gram-negative bacteria.
Resumo:
The protein p21Cip1, Waf1, Sdi1 is a potent inhibitor of cyclin-dependent kinases (CDKs). p21 can also block DNA replication through its interaction with the proliferating cell nuclear antigen (PCNA), which is an auxiliary factor for polymerase δ. PCNA is also implicated in the repair resynthesis step of nucleotide excision repair (NER). Previous studies have yielded contradictory results on whether p21 regulates NER through its interaction with PCNA. Resolution of this controversy is of interest because it would help understand how DNA repair and replication are regulated. Hence, we have investigated the effect of p21 on NER both in vitro and in vivo using purified fragments of p21 containing either the CDK-binding domain (N terminus) or the PCNA binding domain (C terminus) of the protein. In the in vitro studies, DNA repair synthesis was measured in extracts from normal human fibroblasts using plasmids damaged by UV irradiation. In the in vivo studies, we used intact and permeabilized cells. The results show that the C terminus of the p21 protein inhibits NER both in vitro and in vivo. These are the first in vivo studies in which this question has been examined, and we demonstrate that inhibition of NER by p21 is not merely an artificial in vitro effect. A 50% inhibition of in vitro NER occurred at a 50:1 molar ratio of p21 C-terminus fragment to PCNA monomer. p21 differentially regulates DNA repair and replication, with repair being much less sensitive to inhibition than replication. Our in vivo results suggest that the inhibition occurs at the resynthesis step of the repair process. It also appears that preassembly of PCNA at repair sites mitigates the inhibitory effect of p21. We further demonstrate that the inhibition of DNA repair is mediated via binding of p21 to PCNA. The N terminus of p21 had no effect on DNA repair, and the inhibition of DNA repair by the C terminus of p21 was relieved by the addition of purified PCNA protein.
Resumo:
Unlike properly folded and assembled proteins, most misfolded and incompletely assembled proteins are retained in the endoplasmic reticulum of mammalian cells and degraded without transport to the Golgi complex. To analyze the mechanisms underlying this unique sorting process and its fidelity, the fate of C-terminally truncated fragments of influenza hemagglutinin was determined. An assortment of different fragments was generated by adding puromycin at low concentrations to influenza virus-infected tissue culture cells. Of the fragments generated, <2% was secreted, indicating that the system for detecting defects in newly synthesized proteins is quite stringent. The majority of secreted species corresponded to folding domains within the viral spike glycoprotein. The retained fragments acquired a partially folded structure with intrachain disulfide bonds and conformation-dependent antigenic epitopes. They associated with two lectin-like endoplasmic reticulum chaperones (calnexin and calreticulin) but not BiP/GRP78. Inhibition of the association with calnexin and calreticulin by the addition of castanospermine significantly increased fragment secretion. However, it also caused association with BiP/GRP78. These results indicated that the association with calnexin and calreticulin was involved in retaining the fragments. They also suggested that BiP/GRP78 could serve as a backup for calnexin and calreticulin in retaining the fragments. In summary, the results showed that the quality control system in the secretory pathway was efficient and sensitive to folding defects, and that it involved multiple interactions with endoplasmic reticulum chaperones.