981 resultados para C-alpha model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, BALB/c mice were used to develop a model for the hepatic injury associated to dengue infection. Histological analysis after subcutaneous inoculation with a low viral dose of dengue-2 virus showed Kupffer cell hyperplasia and an increased inflammatory cellular infiltrate next to the bile ducts on days 5, 7 and 14 post-inoculation, mainly characterized by the presence of mononuclear cells. The liver mRNA transcription level of IL-1 beta was highest on the 5th day post-infection (p.i.) and decreased by the 21st day, TNF-alpha showed a peak of mRNA transcription after 14 days p.i. coinciding with the regression of cellular infiltrates and elevated expression of TGF-beta mRNA. Serum AST and ALT levels were slightly elevated at 7 and 14 days post-infection. Dengue-2 RNA levels were undetectable in the liver on any of the days following inoculation. Our observations suggest that, as it is true for humans, the animals undergo a transient and slight liver inflammation, probably due to local cytokine production and cellular infiltration in the liver. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss the existence of alpha-Holder classical solutions for non-autonomous abstract partial neutral functional differential equations. An application is considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A doença de Machado-Joseph (DMJ) ou ataxia espinocerebelosa do tipo 3 (SCA3), conhecida por ser a mais comum das ataxias hereditárias dominantes em todo o mundo, é uma doença neurodegenerativa autossómica dominante que leva a uma grande incapacidade motora, embora sem alterar o intelecto, culminando com a morte do doente. Atualmente não existe nenhum tratamento eficaz para esta doença. A DMJ é resultado de uma alteração genética causada pela expansão de uma sequência poliglutamínica (poliQ), na região C-terminal do gene que codifica a proteína ataxina-3 (ATXN3). Os mecanismos celulares das doenças de poliglutaminas que provocam toxicidade, bem como a função da ATXN3, não são ainda totalmente conhecidos. Neste trabalho, usamos, pela sua simplicidade e potencial genético, um pequeno animal invertebrado, o nemátode C. elegans, com o objetivo de identificar fármacos eficazes para o combate contra a patogénese da DMJ, analisando simultaneamente o seu efeito na agregação da ATXN3 mutante nas células neuronais in vivo e o seu impacto no comportamento motor dos animais. Este pequeno invertebrado proporciona grandes vantagens no estudo dos efeitos tóxicos de proteínas poliQ nos neurónios, uma vez que a transparência das suas 959 células (das quais 302 são neurónios) facilita a deteção de proteínas fluorescentes in vivo. Para além disso, esta espécie tem um ciclo de vida curto, é económica e de fácil manutenção. Neste trabalho testámos no nosso modelo transgénico da DMJ com 130Qs em C.elegans dois compostos potencialmente moduladores da agregação da ATXN3 mutante e da resultante disfunção neurológica, atuando pela via da autofagia. De modo a validar a possível importância terapêutica da ativação da autofagia os compostos candidatos escolhidos foram o Litío e o análogo da Rapamicina CCI-779, testados independentemente e em combinação. A neuroproteção conferida pelo Litío e pelo CCI-779 independentemente sugere que o uso destes fármacos possa ser considerado uma boa estratégia como terapia para a DMJ, a testar em organismos evolutivamente mais próximos do humano. A manipulação da autofagia, segundo vários autores, parece ser benéfica e pode ser a chave para o desenvolvimento de novos tratamentos para várias doenças relacionadas com a agregação proteica e o envelhecimento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to identify new compounds to treat Chagas disease during the acute phase with higher activity and lower toxicity than the reference drug benznidazole (Bz), two hydroxyphthalazine derivative compounds were prepared and their trypanocidal effects against Trypanosoma cruzi were evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by flow cytometry assays against Vero cells. In vivo assays were performed in BALB/c mice, in which the parasitemia levels were quantified by fresh blood examination; the assignment of a cure was determined by reactivation of blood parasitemia levels after immunosuppression. The mechanism of action was elucidated at metabolic and ultra-structural levels, by (1)H NMR and TEM studies. Finally, as these compounds are potentially capable of causing oxidative damage in the parasites, the study was completed, by assessing their activity as potential iron superoxide dismutase (Fe-SOD) inhibitors. High-selectivity indices observed in vitro were the basis of promoting one of the tested compounds to in vivo assays. The tests on the murine model for the acute phase of Chagas disease showed better parasitemia inhibition values than those found for Bz. Compound 2 induced a remarkable decrease in the reactivation of parasitemia after immunosuppression. Compound 2 turned out to be a great inhibitor of Fe-SOD. The high antiparasitic activity and low toxicity together with the modest costs for the starting materials render this compound an appropriate molecule for the development of an affordable anti-Chagas agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We elucidated the mechanisms of action of two n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in Jurkat T-cells. Both DHA and EPA were principally incorporated into phospholipids in the following order: phosphatidylcholine < phosphatidylethanolamine < phosphatidylinositol/phosphatidylserine. Furthermore, two isoforms of phospholipase A(2) (i.e., calcium-dependent and calcium-independent) were implicated in the release of DHA and EPA, respectively, during activation of these cells. The two fatty acids inhibited the phorbol 12-myristate 13-acetate (PMA)-induced plasma membrane translocation of protein kinase C (PKC)-alpha and -epsilon. The two n-3 PUFAs also inhibited the nuclear translocation of nuclear factor kappaB (NF-kappaB) and the transcription of the interleukin-2 (IL-2) gene in PMA-activated Jurkat T-cells. Together, these results demonstrate that DHA and EPA, being released by two isoforms of phospholipase A(2), modulate IL-2 gene expression by exerting their action on two PKC isoforms and NF-kappaB in Jurkat T-cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of a European initiative (EuroVacc), we report the design, construction, and immunogenicity of two HIV-1 vaccine candidates based on a clade C virus strain (CN54) representing the current major epidemic in Asia and parts of Africa. Open reading frames encoding an artificial 160-kDa GagPolNef (GPN) polyprotein and the external glycoprotein gp120 were fully RNA and codon optimized. A DNA vaccine (DNA-GPN and DNA-gp120, referred to as DNA-C), and a replication-deficient vaccinia virus encoding both reading frames (NYVAC-C), were assessed regarding immunogenicity in Balb/C mice. The intramuscular administration of both plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial T-cell responses against both antigens as well as Env-specific antibodies. Whereas low doses of NYVAC-C failed to induce specific CTL or antibodies, high doses generated cellular as well as humoral immune responses, but these did not reach the levels seen following DNA vaccination. The most potent immune responses were detectable using prime:boost protocols, regardless of whether DNA-C or NYVAC-C was used as the priming or boosting agent. These preclinical findings revealed the immunogenic response triggered by DNA-C and its enhancement by combining it with NYVAC-C, thus complementing the macaque preclinical and human phase I clinical studies of EuroVacc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we investigated the molecular mechanisms underlying the ATP analogue adenosine-5'-O-(3-thio)triphosphate-induced nucleocytoplasmic shuttling of the mRNA stabilizing factor HuR in human (h) mesangial cells (MC). Using synthetic protein kinase C (PKC) inhibitors and small interfering RNA approaches, we demonstrated that knockdown of PKC alpha efficiently blocked the ATP-dependent nuclear HuR export to the cytoplasm. The functional importance of PKC alpha in HuR shuttling is highlighted by the high cytosolic HuR content detected in hMC stably overexpressing PKC alpha compared with mock-transfected cells. The ATP-induced recruitment of HuR to the cytoplasm is preceded by a direct interaction of PKC alpha with nuclear HuR and accompanied by increased Ser phosphorylation as demonstrated by coimmunoprecipitation experiments. Mapping of putative PKC target sites identified serines 158 and 221 as being indispensable for HuR phosphorylation by PKC alpha. RNA pull-down assay and RNA electrophoretic mobility shift assay demonstrated that the HuR shuttling by ATP is accompanied by an increased HuR binding to cyclooxygenase (COX)-2 mRNA. Physiologically, the ATP-dependent increase in RNA binding is linked with an augmentation in COX-2 mRNA stability and subsequent increase in prostaglandin E(2) synthesis. Regulation of HuR via PKC alpha-dependent phosphorylation emphasizes the importance of posttranslational modification for stimulus-dependent HuR shuttling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous restriction analysis of cloned equine DNA and genomic DNA of equine peripheral blood mononuclear cells had indicated the existence of one c epsilon, one c alpha and up to six c gamma genes in the haploid equine genome. The c epsilon and c alpha genes have been aligned on a 30 kb DNA fragment in the order 5' c epsilon-c alpha 3'. Here we describe the alignment of the equine c mu and c gamma genes by deletion analysis of one IgM, four IgG and two equine light chain expressing heterohybridomas. This analysis establishes the existence of six c gamma genes per haploid genome. The genomic alignment of the cH-genes is 5' c mu/(/) c gamma 1/(/) c gamma 2/(/) c gamma 3/(/) c gamma 4/(/) c gamma 5/(/) c gamma 6/(/) c epsilon-c alpha 3', naming the c gamma genes according to their position relative to c mu. For three of the c gamma genes the corresponding IgG isotypes could be identified as IgGa for c gamma 1, IgG(T) for c gamma 3 and IgGb for c gamma 4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach of comparing protein structures that does not involve the procedure of superposition is suggested. An invariant system of coordinates for immunoglobulin molecules that is based on the geometrical symmetry inherent to the variable domain light-chain (VL)-heavy-chain (VH) complex is described. The coordinates of the Calpha atoms in 22 immunoglobulin structures are calculated in the invariant system of coordinates. We found that 76 identical positions in this Calpha framework are symmetrical about the twofold axis. Comparison of the identical positions in these molecules allows us to select 96 positions in the light chains and 87 positions in the heavy chains whose Calpha atom coordinates are approximately the same. To check whether the average coordinates of Calpha atoms in these positions complies with the stereochemical requirements, we calculated Calpha-Calpha distances. Seventy-three positions of the light chains and 72 positions of the heavy chains satisfy the Calpha-Calpha distance criterion. The Calpha atoms in these positions are used for constructing the "standard" Calpha framework of VL and VH complexes. The average coordinates of Calpha atoms are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein kinase C (PKC) isoenzymes are essential components of cell signaling. In this study, we investigated the regulation of PKC-alpha in murine B16 amelanotic melanoma (B16a) cells by the monohydroxy fatty acids 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] and 13(S)-hydroxyoctadecadienoic acid [13(S)-HODE]. 12(S)-HETE induced a translocation of PKC-alpha to the plasma membrane and focal adhesion plaques, leading to enhanced adhesion of B16a cells to the matrix protein fibronectin. However, 13(S)-HODE inhibited these 12(S)-HETE effects on PKC-alpha. A receptor-mediated mechanism of action for 12(S)-HETE and 13(S)-HODE is supported by the following findings. First, 12(S)-HETE triggered a rapid increase in cellular levels of diacylglycerol and inositol trisphosphate in B16a cells. 13(S)-HODE blocked the 12(S)-HETE-induced bursts of both second messengers. Second, the 12(S)-HETE-increased adhesion of B16a cells to fibronectin was sensitive to inhibition by a phospholipase C inhibitor and pertussis toxin. Finally, a high-affinity binding site (Kd = 1 nM) for 12(S)-HETE was detected in B16a cells, and binding of 12(S)-HETE to B16a cells was effectively inhibited by 13(S)-HODE (IC50 = 4 nM). In summary, our data provide evidence that regulation of PKC-alpha by 12(S)-HETE and 13(S)-HODE may be through a guanine nucleotide-binding protein-linked receptor-mediated hydrolysis of inositol phospholipids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy landscape theory has been an invaluable theoretical framework in the understanding of biological processes such as protein folding, oligomerization, and functional transitions. According to the theory, the energy landscape of protein folding is funneled toward the native state, a conformational state that is consistent with the principle of minimal frustration. It has been accepted that real proteins are selected through natural evolution, satisfying the minimum frustration criterion. However, there is evidence that a low degree of frustration accelerates folding. We examined the interplay between topological and energetic protein frustration. We employed a Cα structure-based model for simulations with a controlled nonspecific energetic frustration added to the potential energy function. Thermodynamics and kinetics of a group of 19 proteins are completely characterized as a function of increasing level of energetic frustration. We observed two well-separated groups of proteins: one group where a little frustration enhances folding rates to an optimal value and another where any energetic frustration slows down folding. Protein energetic frustration regimes and their mechanisms are explained by the role of non-native contact interactions in different folding scenarios. These findings strongly correlate with the protein free-energy folding barrier and the absolute contact order parameters. These computational results are corroborated by principal component analysis and partial least square techniques. One simple theoretical model is proposed as a useful tool for experimentalists to predict the limits of improvements in real proteins. © 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sizable fraction of T cells expressing the NK cell marker NK1.1 (NKT cells) bear a very conserved TCR, characterized by homologous invariant (inv.) TCR V alpha 24-J alpha Q and V alpha 14-J alpha 18 rearrangements in humans and mice, respectively, and are thus defined as inv. NKT cells. Because human inv. NKT cells recognize mouse CD1d in vitro, we wondered whether a human inv. V alpha 24 TCR could be selected in vivo by mouse ligands presented by CD1d, thereby supporting the development of inv. NKT cells in mice. Therefore, we generated transgenic (Tg) mice expressing the human inv. V alpha 24-J alpha Q TCR chain in all T cells. The expression of the human inv. V alpha 24 TCR in TCR C alpha(-/-) mice indeed rescues the development of inv. NKT cells, which home preferentially to the liver and respond to the CD1d-restricted ligand alpha-galactosylceramide (alpha-GalCer). However, unlike inv. NKT cells from non-Tg mice, the majority of NKT cells in V alpha 24 Tg mice display a double-negative phenotype, as well as a significant increase in TCR V beta 7 and a corresponding decrease in TCR V beta 8.2 use. Despite the forced expression of the human CD1d-restricted TCR in C alpha(-/-) mice, staining with mCD1d-alpha-GalCer tetramers reveals that the absolute numbers of peripheral CD1d-dependent T lymphocytes increase at most by 2-fold. This increase is accounted for mainly by an increased fraction of NK1.1(-) T cells that bind CD1d-alpha-GalCer tetramers. These findings indicate that human inv. V alpha 24 TCR supports the development of CD1d-dependent lymphocytes in mice, and argue for a tight homeostatic control on the total number of inv. NKT cells. Thus, human inv. V alpha 24 TCR-expressing mice are a valuable model to study different aspects of the inv. NKT cell subset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: To examine Escherichia coli strains EQ1, DH5 alpha, BLR and BL21 for known pathogenic mechanisms. Methods and Results: Using specific DNA probes, the strains were shown not to carry the genes encoding invasion, various adhesion phenotypes or expression of a range of enterotoxins. The strains were unable to express long-chain lipopolysaccharide and were susceptible to the effects of serum complement. Using a BALB/c mouse model, the strains were shown to be unable to survive in selected tissues or to persist in the mouse gut. Using a chick model, strains EQ1, BLR and BL21 invaded livers but not spleens; only strain EQ1 persisted in the chick gut. In Merino sheep, only strain EQ1 was detected 6 d postinfection. Conclusions: Escherichia coli strains EQ1, DH5 alpha, BLR and BL21 did not carry the well-recognized pathogenic mechanisms required by strains of E. coli causing the majority of enteric infections. Significance and Impact of the Study: Escherichia coli strains EQ1, DH5 alpha, BLR and BL21 were considered to be non-pathogenic and unlikely to survive in host tissues and cause disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prion protein (PrP(C)) is a conserved glycosylphosphatidyl-inositol-anchored cell surface protein expressed by neurons and other cells. Stress-inducible protein 1 (STI1) binds PrP(C) extracellularly, and this activated signaling complex promotes neuronal differentiation and neuroprotection via the extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP-dependent protein kinase 1 (PKA) pathways. However, the mechanism by which the PrPC-STI1 interaction transduces extracellular signals to the intracellular environment is unknown. We found that in hippocampal neurons, STI1-PrP(C) engagement induces an increase in intracellular Ca(2+) levels. This effect was not detected in PrP(C)-null neurons or wild-type neurons treated with an STI1 mutant unable to bind PrP(C). Using a best candidate approach to test for potential channels involved in Ca(2+) influx evoked by STI1-PrP(C), we found that alpha-bungarotoxin, a specific inhibitor for alpha 7 nicotinic acetylcholine receptor (alpha 7nAChR), was able to block PrP(C)-STI1-mediated signaling, neuroprotection, and neuritogenesis. Importantly, when alpha 7nAChR was transfected into HEK 293 cells, it formed a functional complex with PrP(C) and allowed reconstitution of signaling by PrP(C)-STI1 interaction. These results indicate that STI1 can interact with the PrP(C).alpha 7nAChR complex to promote signaling and provide a novel potential target for modulation of the effects of prion protein in neurodegenerative diseases.