998 resultados para C-H amination
Resumo:
Pyrido[1,2-a]benzimidazoles1, 2a are interesting compounds both from the viewpoint of medicinal chemistry2–7 (solubility,7 DNA intercalation3) and materials chemistry8 (fluorescence). Of note among the former is the antibiotic drug Rifaximin,5 which contains this heteroaromatic core. The classical synthetic approach for the assembly of pyrido[1,2-a]benzimidazoles is by [3+3] cyclocondensation of benzimidazoles containing a methylene group at C2 with appropriate bielectrophiles.2a However, these procedures are often low-yielding, involve indirect/lengthy sequences, and/or provide access to a limited range of products, primarily providing derivatives with substituents located on the pyridine ring (A ring, Scheme 1).2–4 Theoretically, a good alternative synthetic method for the synthesis of pyrido[1,2-a]benzimidazoles with substituents in the benzene ring (C ring) should be accessible by intramolecular transition-metal-catalyzed CN bond formation in N-(2-chloroaryl)pyridin-2-amines, based on chemistry recently developed in our research group.9 These substrates themselves are easily available through SNAr or selective Pd-catalyzed amination10 of 2-chloropyridine with 2-chloroanilines.11 If a synthetic procedure that eliminated the need for preactivation of the 2-position of the 2-chloroarylamino entity could be developed, this would be even more powerful, as anilines are more readily commercially available than 2-chloroanilines. Therefore the synthesis of pyrido[1,2-a]benzimidazoles (4) by a transition-metal-catalyzed intramolecular CH amination approach from N-arylpyridin-2-amines (3) was explored (Scheme 1).
Resumo:
La réaction d’amination de liens C-H, impliquant la transformation directe d’un lien C-H en lien C-N constitue une approche synthétique d’avenir pour la préparation de composés azotés. L’application de cette stratégie de manière intramoléculaire apparaît comme une approche puissante pour la synthèse de composés hétérocycliques. En particulier, les oxazolidinones, carbamates cycliques à cinq chaînons, constituant une nouvelle classe d’antibiotiques très prometteuse, pourraient être synthétisées par cette méthode. Il y a moins d’une dizaine d’années, notre groupe de recherche a travaillé sur le développement de méthodologies utilisant des espèces nitrènes métalliques pour l’amination intra et intermoléculaire. Les N-tosyloxycarbamates, en présence d’une base et d’un catalyseur dimère de rhodium (II) tétracarboxylate sont les précurseurs de ces espèces nitrènes métalliques, capables de faire l’insertion de liens C(sp3)-H. Dans ces travaux de thèse, nous avons travaillé sur le développement d’une méthode plus « verte » d’amination intramoléculaire. Les N-mésyloxycarbamates, plus légers que leurs homologues N-tosyloxycarbamates, ont été identifiés comme d’excellents précurseurs de nitrènes. La méthodologie développée ne nécessite que 3 mol % de dimère de rhodium Rh2(tpa)4 et de 1,5 équivalents de solution aqueuse saturée de K2CO3, le tout dans l’acétate d’éthyle et donne de bons rendements de cyclisation. Une étude de l’étendue réactionnelle a été effectuée, montrant la tolérance et les limitations de notre système catalytique : les hétéroatomes ne posent pas de problèmes hormis l’atome d’azote, qui doit être protégé afin de garantir la transformation. En outre, nous avons constaté que les liens C-H aliphatiques secondaires sont moins réactifs que les liens tertiaires. Après avoir tenté de développer des conditions réactionnelles spécifiques aux liens C-H non activés, nous avons montré la possibilité d’aminer des liens C-H propargyliques de manière chimiosélective ; la triple liaison C-C peut ensuite être dérivatisée efficacement, donnant accès à la formule saturée correspondante ainsi qu’à d’autres motifs. Dans un désir de substituer les complexes de rhodium par d’autres complexes de métaux plus abondants et moins dispendieux, nous nous sommes tournés, dans un premier temps, vers les complexes de fer et par la suite, vers les pinceurs de nickel. Les phtalocyanines de fer ont été identifiées comme étant de bons catalyseurs de l’amination intramoléculaire de N-mésyloxycarbamates. Le chlorure de phtalocyanine de fer (III), en présence d’un sel de AgBF4 et de K2CO3, dans le 1,1,2,2-tétrachloroéthane anhydre, permet l’obtention de la 4-phenyloxazolidin-2-one avec 63% de rendement. En outre, il est possible d’atteindre un rendement de 49% à partir du même substrat N-mésyloxycarbamate, par catalyse avec un pinceur de nickel de type POCN, en présence d’un sel de mésylate. Des indices sur le mécanisme des ces deux transformations ont pu être recueillis lors de la courte étude de ces systèmes.
Resumo:
La réaction d’amination de liens C-H, impliquant la transformation directe d’un lien C-H en lien C-N constitue une approche synthétique d’avenir pour la préparation de composés azotés. L’application de cette stratégie de manière intramoléculaire apparaît comme une approche puissante pour la synthèse de composés hétérocycliques. En particulier, les oxazolidinones, carbamates cycliques à cinq chaînons, constituant une nouvelle classe d’antibiotiques très prometteuse, pourraient être synthétisées par cette méthode. Il y a moins d’une dizaine d’années, notre groupe de recherche a travaillé sur le développement de méthodologies utilisant des espèces nitrènes métalliques pour l’amination intra et intermoléculaire. Les N-tosyloxycarbamates, en présence d’une base et d’un catalyseur dimère de rhodium (II) tétracarboxylate sont les précurseurs de ces espèces nitrènes métalliques, capables de faire l’insertion de liens C(sp3)-H. Dans ces travaux de thèse, nous avons travaillé sur le développement d’une méthode plus « verte » d’amination intramoléculaire. Les N-mésyloxycarbamates, plus légers que leurs homologues N-tosyloxycarbamates, ont été identifiés comme d’excellents précurseurs de nitrènes. La méthodologie développée ne nécessite que 3 mol % de dimère de rhodium Rh2(tpa)4 et de 1,5 équivalents de solution aqueuse saturée de K2CO3, le tout dans l’acétate d’éthyle et donne de bons rendements de cyclisation. Une étude de l’étendue réactionnelle a été effectuée, montrant la tolérance et les limitations de notre système catalytique : les hétéroatomes ne posent pas de problèmes hormis l’atome d’azote, qui doit être protégé afin de garantir la transformation. En outre, nous avons constaté que les liens C-H aliphatiques secondaires sont moins réactifs que les liens tertiaires. Après avoir tenté de développer des conditions réactionnelles spécifiques aux liens C-H non activés, nous avons montré la possibilité d’aminer des liens C-H propargyliques de manière chimiosélective ; la triple liaison C-C peut ensuite être dérivatisée efficacement, donnant accès à la formule saturée correspondante ainsi qu’à d’autres motifs. Dans un désir de substituer les complexes de rhodium par d’autres complexes de métaux plus abondants et moins dispendieux, nous nous sommes tournés, dans un premier temps, vers les complexes de fer et par la suite, vers les pinceurs de nickel. Les phtalocyanines de fer ont été identifiées comme étant de bons catalyseurs de l’amination intramoléculaire de N-mésyloxycarbamates. Le chlorure de phtalocyanine de fer (III), en présence d’un sel de AgBF4 et de K2CO3, dans le 1,1,2,2-tétrachloroéthane anhydre, permet l’obtention de la 4-phenyloxazolidin-2-one avec 63% de rendement. En outre, il est possible d’atteindre un rendement de 49% à partir du même substrat N-mésyloxycarbamate, par catalyse avec un pinceur de nickel de type POCN, en présence d’un sel de mésylate. Des indices sur le mécanisme des ces deux transformations ont pu être recueillis lors de la courte étude de ces systèmes.
Resumo:
Various 1-acyl-2,4,10-trioxaadamantanes were prepared from the corresponding 1-methoxycarbonyl derivatives, via conversion to the N-acylpiperidine derivatives followed by reaction with a Grignard reagent in refluxing THF. These alpha-keto orthoformates were converted to the corresponding imines with 1-(S)-phenethyl amine (TiCl4/Et3N/toluene/reflux), with the Schiff bases being reduced further with NaBH4 (MeOH/0 degrees C) into the corresponding 1-(S)-phenethyl amines (diastereomeric excess 91:9 by NMR). Hydrogenolysis of the phenethyl group (Pd-C/MeOH) finally led to the 1-(aminoalkyl)trioxaadamantanes, which are chiral C-protected alpha-amino acids, in excellent overall yields. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The ipso/cine ratio in the amination of 5-bromo-2,3-benzo- or 2-bromo-4,5-benzotropone shows a dependence upon the temperature at which the reaction is conducted, changing in favour of the ipso-product when the temperature is maintained high, ruling out an aryne-type mechanism. A comparison of independent mechanisms envisaged for the formation of the two isomeric products suggests a two-part reason: (i) at a higher reaction temperature, C-protonation, a step necessary for the formation of the cine-product, could be retarded when a direct internal mode is interfered with by a less efficient external one, and (ii) reketonisation by elimination of bromide, needed to form the ipso-product, is likely to have a high temperature coefficient enabling the rate of its formation to overtake that of the cine-product.
Resumo:
A facile metal-free route of oxidative amination of benzoxazole by activation of C-H bonds with secondary or primary amines in the presence of catalytic iodine in aqueous tert-butyl hydroperoxide proceeds smoothly at ambient temperature under neat reaction condition to furnish the high yield of the aminated product. This user-friendly method to form C-N bonds produces tertiary butanol and water as the byproduct, which are environmentally benign. The application of the methodology is demonsrated by synthesizing therapeutically active benzoxazoles.
Resumo:
Single-step amination: The N-iodosuccinimide (NIS)-catalyzed amidation of acetophenone derivatives by using tert-butylhydroperoxide (TBHP) as an oxidant is presented. A variety of acetyl derivatives of heterocyclic compounds were easily converted to their corresponding ketoamides under these conditions. A new, NIS-catalyzed amination of propiophenone and its derivatives in the presence of TBHP to furnish the corresponding 2-aminoketone derivatives is the first reported single-step amination of propiophenone derivatives.
Resumo:
Synthetic biology promises to transform organic synthesis by enabling artificial catalysis in living cells. I start by reviewing the state of the art in this young field and recognizing that new approaches are required for designing enzymes that catalyze nonnatural reactions, in order to expand the scope of biocatalytic transformations. Carbene and nitrene transfers to C=C and C-H bonds are reactions of tremendous synthetic utility that lack biological counterparts. I show that various heme proteins, including cytochrome P450BM3, will catalyze promiscuous levels of olefin cyclopropanation when provided with the appropriate synthetic reagents (e.g., diazoesters and styrene). Only a few amino acid substitutions are required to install synthetically useful levels of stereoselective cyclopropanation activity in P450BM3. Understanding that the ferrous-heme is the active species for catalysis and that the artificial reagents are unable to induce a spin-shift-dependent increase in the redox potential of the ferric P450, I design a high-potential serine-heme ligated P450 (P411) that can efficiently catalyze cyclopropanation using NAD(P)H. Intact E. coli whole-cells expressing P411 are highly efficient asymmetric catalysts for olefin cyclopropanation. I also show that engineered P450s can catalyze intramolecular amination of benzylic C-H bonds from arylsulfonyl azides. Finally, I review other examples of where synthetic reagents have been used to drive the evolution of novel enzymatic activity in the environment and in the laboratory. I invoke preadaptation to explain these observations and propose that other man-invented reactions may also be transferrable to natural enzymes by using a mechanism-based approach for choosing the enzymes and the reagents. Overall, this work shows that existing enzymes can be readily adapted for catalysis of synthetically important reactions not previously observed in nature.
Resumo:
Two novel bis(amine anhydride)s, NN-bis(3,4-dicarboxyphenyl)aniline dianhydride (I) and N,N-bis(3,4-dicarboxyphenyl)-p-tert-butylaniline (II), were synthesized from the palladium-catalyzed amination reaction of N-methyl-protected 4-chlorophthalic anhydride with arylamines, followed by alkaline hydrolysis of the intermediate bis(amine-phthalimide)s and subsequent dehydration of the resulting tetraacids. The X-ray structures of anhydride I and II were determined. The obtained dianhydride monomers were reacted with various aromatic diamines to produce a series of novel polyimides. Because of the incorporation of bulky, propeller-shaped triphenylamine units along the polymer backbone, all polyimides exhibited good solubility in many aprotic solvents while maintaining their high thermal properties. These polymers had glass transition temperatures in the range of 298-408 degrees C. Thermogravimetric analysis showed that all polymers were stable, with 10% weight loss recorded above 525 degrees C in nitrogen.The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 95-164 MPa, 8.8-15.7%, and 1.3-2.2 GPa, respectively.
Resumo:
Crombie, Leslie; Haigh, David; Jones, Raymond C. F.; Mat-Zin, A.Rasid. Dep. Chem., Univ. Nottingham, Nottingham, UK. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972-1999) (1993), (17), 2047-54. CODEN: JCPRB4 ISSN: 0300-922X. Journal written in English. CAN 120:164608 AN 1994:164608 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract The alkaloid homaline I was prepd. in (?) and natural (S,S)-(-) forms. Linking of 2-azacyclooctanone units either directly or successively using 1,4-dihalogenobutanes or 1,4-dihalogenobut-2-ynes is examd. (?)-5-Methyl-4-phenyl-1,5-diazacyclooctan-2-one is first made by a 2,2'-dithiodipyridine/triphenylphosphine-mediated cyclization, and then by amination and transamidative ring expansion from N-(3-chloropropyl)-4-phenylazetidin-2-one in liq. ammonia, followed by N-methylation. Coupling through a 1,4-dihalogenobutane of either the N-methylated azalactam, or the unmethylated azalactam followed by methylation, gave homaline in (?) and meso forms. (R)-(-)-phenylglycine was converted via (S)-?-phenyl-?-alanine into an (S)-?-lactam which was then alkylated with 1-bromo-3-chloropropane, and aminated and ring expanded in liq. ammonia. Coupling of the homochiral azalactam (2 mol) so formed with 1,4-dibromobutane, followed by N-methylation, gave (S,S)-(-)-homaline identical with the natural material.
Resumo:
The rapid synthesis of functionalised morpholines and [1,4]-oxazepanes displaying up to three stereocentres, by reductive amination reactions between carbohydrate derived dialdehydes and a range of amines, is described. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The challenge of the present work was to synthesize and to characterize new classes of N-containing polymers via palladium-catalyzed aryl amination. This work was inspired by a desire to combine the properties of high-performance polymers such as PEKs with those of N-containing conductive polymers such as polyaniline (PANI), poly(aromatic amides) (PAAs), and the ready synthesis of N-containing simple aromatic compound by the Buchwald-Hartwig reaction. Careful investigation of a model reaction was carried out to provide insights into the formation of side products which will have a negative effect upon the molecular weight or upon the materials properties of the desired polymers in the polycondensation reaction. In this thesis, five new different polymer classes namely, poly(imino ketone)s (PIKs), poly(imino acridine)s (PIAcs), poly(imino azobenzene)s (PIAzos), poly(imino fluorenone)s (PIFOs), and poly(imino carbazole)s (PICs) were synthesized and fully characterized by means of 1H-NMR, elemental analysis, UV, FT-IR, X-ray, GPC, TGA, DSC, DMA, and dielectric spectroscopy. To optimize the polycondensation process, the influence of the concentration, temperature, ligands and the reactivity of the halogen containing monomers were investigated. A temperature of 100-165 °C and a concentration of 30-36 % were found to be optimal for the palladium-catalyzed polycondensation to produce polymer with high molecular weight (Mn = 85 900, Mw = 474 500, DP = 126). Four different ligands were used successfully in the Pd-catalyzed process, of which the Pd/BINAP system was found to be the most effective catalyst, producing the highest yield and highest molecular weight polymers. It was found that the reactivity decreases strongly with increasing electronegativity of the halogen atoms, for example better yields, and higher molecular weights were obtained by using dibromo compounds than dichloro compounds while difluoro compounds were totally unreactive. Polymer analogous transformations, such as the protonation reaction of the ring nitrogens in PIAcs, or of the azobenzene groups of PIAzos, the photo and thermal cis-trans-isomerization of PIAzos, and of poly(imino alcohol)s were also studied. The values of the dielectric constants of PIKs at 1 MHz were in the range 2.71-3.08. These low values of the dielectric constant are lower than that of "H Film", a polyimide Kapton film which is one of the most preferred high-performance dielectrics in microelectronic applications having a dielectric constant of 3.5. In addition to the low values of the dielectric constants, PIKs have lower and glass transition temperatures (Tgs) than arimides such as Kapton which may make them more easily processable. Cyclic voltammetry showed that PICs exhibited low oxidation and reduction potentials and their values were shifted to low values with increasing degree of polymerization i.e. with increasing of the carbazole content in backbone of PICs (PIC-7, 0.44, 0.33 V, DP= 37, PIC-5, 0.63, 0.46, DP= 16, respectively).
Resumo:
Improvement of the features of an enzyme is in many instances a pre-requisite for the industrial implementation of these exceedingly interesting biocatalysts. To reach this goal, the researcher may utilize different tools. For example, amination of the enzyme surface produces an alteration of the isoelectric point of the protein along with its chemical reactivity (primary amino groups are the most widely used to obtain the reaction of the enzyme with surfaces, chemical modifiers, etc.) and even its “in vivo” behavior. This review will show some examples of chemical (mainly modifying the carboxylic groups using the carbodiimide route), physical (using polycationic polymers like polyethyleneimine) and genetic amination of the enzyme surface. Special emphasis will be put on cases where the amination is performed to improve subsequent protein modifications. Thus, amination has been used to increase the intensity of the enzyme/support multipoint covalent attachment, to improve the interaction with cation exchanger supports or polymers, or to promote the formation of crosslinkings (both intra-molecular and in the production of crosslinked enzyme aggregates). In other cases, amination has been used to directly modulate the enzyme properties (both in immobilized or free form). Amination of the enzyme surface may also pursue other goals not related to biocatalysis. For example, it has been used to improve the raising of antibodies against different compounds (both increasing the number of haptamers per enzyme and the immunogenicity of the composite) or the ability to penetrate cell membranes. Thus, amination may be a very powerful tool to improve the use of enzymes and proteins in many different areas and a great expansion of its usage may be expected in the near future.