1000 resultados para C-FLIP
Resumo:
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has recently attracted attention as a potential therapeutic agent in the treatment of cancer. We assessed the roles of p53, TRAIL receptors, and cellular Fas-associated death domain-like interleukin-1beta-converting enzyme inhibitory protein (c-FLIP) in regulating the cytotoxic effects of recombinant TRAIL (rTRAIL) alone and in combination with chemotherapy [5-fluorouracil (5-FU), oxaliplatin, and irinotecan] in a panel of colon cancer cell lines. Using clonogenic survival and flow cytometric analyses, we showed that chemotherapy sensitized p53 wild-type, mutant, and null cell lines to TRAIL-mediated apoptosis. Although chemotherapy treatment did not modulate mRNA or cell surface expression of the TRAIL receptors death receptor 4, death receptor 5, decoy receptor 1, or decoy receptor 2, it was found to down-regulate expression of the caspase-8 inhibitor, c-FLIP. Stable overexpression of the long c-FLIP splice form but not the short form was found to inhibit chemotherapy/rTRAIL-induced apoptosis. Furthermore, siRNA-mediated down-regulation of c-FLIP, particularly the long form, was found to sensitize colon cancer cells to rTRAIL-induced apoptosis. In addition, treatment of a 5-FU-resistant cell line with 5-FU down-regulated c-FLIP expression and sensitized the chemotherapy-resistant cell line to rTRAIL. We conclude that TRAIL-targeted therapies may be used to enhance conventional chemotherapy regimens in colon cancer regardless of tumor p53 status. Furthermore, inhibition of c-FLIP may be a vital accessory strategy for the optimal use of TRAIL-targeted therapies.
Resumo:
c-FLIP inhibits caspase 8 activation and apoptosis mediated by death receptors such as Fas and DR5. We studied the effect of c-FLIP on the apoptotic response to chemotherapies used in colorectal cancer (CRC) (5-fluorouracil, oxaliplatin and irinotecan). Simultaneous downregulation of both c-FLIP splice forms c-FLIP(L) and c-FLIP(S) with siRNA synergistically enhanced chemotherapy-induced apoptosis in p53 wild-type (HCT116p53(+/+), RKO), null (HCT116p53(-/-)) and mutant (H630) CRC cell lines. Furthermore, overexpression of c-FLIP(L), but not c-FLIP(S), potently inhibited apoptosis induced by chemotherapy in HCT116p53(+/+) cells, suggesting that c-FLIP(L) was the more important splice form in mediating chemoresistance. In support of this, siRNA specifically targeted against c-FLIP(L) synergistically enhanced chemotherapy-induced apoptosis in a manner similar to the siRNA targeted against both splice forms. Inhibition of caspase 8 blocked the enhanced apoptosis induced by c-FLIP-targeted (FT) siRNA and chemotherapy. Furthermore, we found that downregulating cell surface DR5, but not Fas, also inhibited apoptosis induced by FT siRNA and chemotherapy. Interestingly, these effects were not dependent on activation of DR5 by its ligand TRAIL. These results indicate that c-FLIP inhibits TRAIL-independent, DR5- and caspase 8-dependent apoptosis in response to chemotherapy in CRC cells. Moreover, targeting c-FLIP in combination with existing chemotherapies may have therapeutic potential for the treatment of CRC.
Resumo:
c-FLIP is an inhibitor of apoptosis mediated by the death receptors Fas, DR4 and DR5 and is expressed as long (c-FLIPL) and short (c-FLIPS) splice forms. We found that siRNA-mediated silencing of c-FLIP induced spontaneous apoptosis in a panel of p53 wild-type, mutant and null colorectal cancer (CRC) cell lines and that this apoptosis was mediated by caspase 8 and FADD. Further analyses indicated the involvement of DR5 and/or Fas (but not DR4) in regulating apoptosis induced by c-FLIP siRNA. Interestingly, these effects were not dependent on activation of DR5 or Fas by their ligands TRAIL and FasL. Overexpression of c-FLIPL, but not c-FLIPS, significantly decreased spontaneous and chemotherapy-induced apoptosis in HCT116 cells. Further analyses with splice form-specific siRNAs indicated that c-FLIPL was the more important splice form in regulating apoptosis in HCT116, H630 and LoVo cells, although specific knock down of c-FLIPS induced more apoptosis in the HT29 cell line. Importantly, intra-tumoral delivery of c-FLIP-targeted siRNA duplexes induced apoptosis and inhibited the growth of HCT116 xenografts in Balb/c SCID mice. In addition, the growth of c-FLIPL overexpressing CRC xenografts was more rapid than control xenografts, an effect that was significantly enhanced in the presence of chemotherapy. These results indicate that c-FLIP inhibits spontaneous death ligand-independent, death receptor-mediated apoptosis in CRC cells and that targeting c-FLIP may have therapeutic potential for the treatment of colorectal cancer.
Resumo:
Chemotherapy-induced interleukin-8 (IL-8) signaling reduces the sensitivity of prostate cancer cells to undergo apoptosis. In this study, we investigated how endogenous and drug-induced IL-8 signaling altered the extrinsic apoptosis pathway by determining the sensitivity of LNCaP and PC3 cells to administration of the death receptor agonist tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL induced concentration-dependent decreases in LNCaP and PC3 cell viability, coincident with increased levels of apoptosis and the potentiation of IL-8 secretion. Administration of recombinant human IL-8 was shown to increase the mRNA transcript levels and expression of c+FLIPL and c-FLIPS, two isoforms of the endogenous caspase-8 inhibitor. Pretreatment with the CXCR2 antagonist AZ10397767 significantly attenuated IL-8-induced c-FLIP mRNA up-regulation whereas inhibition of androgen receptor- and/or nuclear factor-kappa B-mediated transcription attenuated IL-8-induced c-FLIP expression in LNCaP and PC3 cells, respectively. Inhibition of c-FLIP expression was shown to induce spontaneous apoptosis in both cell lines and to sensitize these prostate cancer cells to treatment with TRAIL, oxaliplatin, and docetaxel. Coadministration of AZ10397767 also increased the sensitivity of PC3 cells to the apoptosis-inducing effects of recombinant TRAIL, most likely due to the ability of this antagonist to block TRAIL- and IL-8-induced up-regulation of c-FLIP in these cells. We conclude that endogenous and TRAIL-induced IL-8 signaling can modulate the extrinsic apoptosis pathway in prostate cancer cells through direct transcriptional regulation of c-FLIP. Therefore, targeted inhibition of IL-8 signaling or c-FLIP expression in prostate cancer may be an attractive therapeutic strategy to sensitize this stage of disease to chemotherapy.
Resumo:
Purpose: To characterize the importance of cellular Fas-associated death domain (FADD)–like interleukin 1ß-converting enzyme (FLICE) inhibitory protein (c-FLIP), a key regulator of caspase-8 (FLICE)–promoted apoptosis, in modulating the response of prostate cancer cells to androgen receptor (AR)–targeted therapy.
Experimental Design: c-FLIP expression was characterized by immunohistochemical analysis of prostatectomy tissue. The functional importance of c-FLIP to survival and modulating response to bicalutamide was studied by molecular and pharmacologic interventions.
Results: c-FLIP expression was increased in high-grade prostatic intraepithelial neoplasia and prostate cancer tissue relative to normal prostate epithelium (P < 0.001). Maximal c-FLIP expression was detected in castrate-resistant prostate cancer (CRPC; P < 0.001). In vitro, silencing of c-FLIP induced spontaneous apoptosis and increased 22Rv1 and LNCaP cell sensitivity to bicalutamide, determined by flow cytometry, PARP cleavage, and caspase activity assays. The histone deacetylase inhibitors (HDACi), droxinostat and SAHA, also downregulated c-FLIP expression, induced caspase-8- and caspase-3/7–mediated apoptosis, and increased apoptosis in bicalutamide-treated cells. Conversely, the elevated expression of c-FLIP detected in the CRPC cell line VCaP underpinned their insensitivity to bicalutamide and SAHA in vitro. However, knockdown of c-FLIP induced spontaneous apoptosis in VCaP cells, indicating its relevance to cell survival and therapeutic resistance.
Conclusion: c-FLIP reduces the efficacy of AR-targeted therapy and maintains the viability of prostate cancer cells. A combination of HDACi with androgen deprivation therapy may be effective in early-stage disease, using c-FLIP expression as a predictive biomarker of sensitivity. Direct targeting of c-FLIP, however, may be relevant to enhance the response of existing and novel therapeutics in CRPC. Clin Cancer Res; 18(14); 3822–33.
Resumo:
Chemoresistance is a major contributor to the aggressiveness of AML and is often due to insufficient apoptosis. The CFLAR gene is expressed as long and short splice forms encoding the anti-apoptotic proteins c-FLIP(L) and c-FLIP(S) (CFLAR(L) and CFLAR(S) , respectively) that play important roles in drug resistance. In univariate analyses of CFLAR mRNA expression in adult AML patients, those individuals with higher than median mRNA expression of the long splice form CFLAR(L) (but not the short splice form) had significantly lower 3 year overall survival (P = 0·04) compared to those with low expression. In cell line studies, simultaneous down-regulation of c-FLIP(L) and c-FLIP(S) proteins using siRNA induced apoptosis in U937 and NB-4 AML cells, but not K562 or OCI-AML3 cells. However, dual c-FLIP(L/S) downregulation sensitized all four cell lines to apoptosis induced by recombinant tumour necrosis factor-related apoptosis-inducing ligand (rTRAIL). Moreover, specific downregulation of c-FLIP(L) was found to recapitulate the phenotypic effects of dual c-FLIP(L/S) downregulation. The histone deacetylase (HDAC)1/2/3/6 inhibitor Vorinostat was found to potently down-regulate c-FLIP(L) expression by transcriptional and post-transcriptional mechanisms and to sensitize AML cells to rTRAIL. Further analyses using more selective HDAC inhibitors revealed that HDAC6 inhibition was not required for c-FLIP(L) down-regulation. These results suggest that c-FLIP(L) may have clinical relevance both as a prognostic biomarker and potential therapeutic target for HDAC inhibitors in AML although this requires further study.
Resumo:
The purpose of this study was to determine the effects of the histone deacetylase inhibitor, MS-275, on the Fas signaling pathway and susceptibility of osteosarcoma (OS) to Fas ligand (FasL)-induced cell death. OS metastasizes almost exclusively to the lungs. We have shown that Fas expression in OS cells is inversely correlated with their metastatic potential. Fas+ cells are rapidly eliminated when they enter the lungs via interaction with FasL, which is constitutively expressed in the lungs. Fas- OS cells escape this FasL-induced apoptosis and survive in the lung microenvironment. Moreover, upregulation of Fas in established OS lung metastases results in tumor regression. Therefore, agents that upregulate Fas expression or activate the Fas signaling pathway may have therapeutic potential. Treatment of Fas- metastatic OS cell lines with 2 μM MS-275 sensitized cells to FasL-induced cell death in vitro. We found that MS-275 did not alter the expression of Fas on the cell surface; rather it resulted in increased levels of Fas within the membrane lipid rafts, as demonstrated by an increase in Fas expression in detergent insoluble lipid raft fractions. We further demonstrated that following MS-275 treatment, Fas colocalized with GM1+ lipid rafts and that there was a decrease in c-FLIP (cellular FLICE-inhibitory protein) mRNA and protein. Downregulation of c-FLIP correlated with caspase activation and apoptosis induction. Transfection of cells with shRNA to c-FLIP also resulted in the localization of Fas to lipid rafts. These studies indicate that MS-275 sensitizes OS cells to FasL by upregulating the expression of Fas in membrane lipid rafts, which correlated with the downregulation of c-FLIP. Treatment of nu/nu-mice with established OS lung metastases with oral MS-275 resulted in increased apoptosis, a significant inhibition of c-FLIP expression in tumors and tumor regression. Histopathological examination of mice showed no significant organ toxicity. Overall, these results suggest that the mechanism by which MS-275 sensitizes OS cells and lung metastases to FasL-induced cell death may be by a reduction in the expression of c-FLIP.
Resumo:
Purpose: Activating mutations in the BRAF oncogene are found in 8% to 15% of colorectal cancer patients and have been associated with poor survival. In contrast with BRAF-mutant (MT) melanoma, inhibition of the MAPK pathway is ineffective in the majority of BRAFMT colorectal cancer patients. Therefore, identification of novel therapies for BRAFMT colorectal cancer is urgently needed.
Experimental Design: BRAFMT and wild-type (WT) colorectal cancer models were assessed in vitro and in vivo. Small-molecule inhibitors of MEK1/2, MET, and HDAC were used, overexpression and siRNA approaches were applied, and cell death was assessed by flow cytometry, Western blotting, cell viability, and caspase activity assays.
Results: Increased c-MET-STAT3 signaling was identified as a novel adaptive resistance mechanism to MEK inhibitors (MEKi) in BRAFMT colorectal cancer models in vitro and in vivo. Moreover, MEKi treatment resulted in acute increases in transcription of the endogenous caspase-8 inhibitor c-FLIPL in BRAFMT cells, but not in BRAFWT cells, and inhibition of STAT3 activity abrogated MEKi-induced c-FLIPL expression. In addition, treatment with c-FLIP–specific siRNA or HDAC inhibitors abrogated MEKi-induced upregulation of c-FLIPL expression and resulted in significant increases in MEKi-induced cell death in BRAFMT colorectal cancer cells. Notably, combined HDAC inhibitor/MEKi treatment resulted in dramatically attenuated tumor growth in BRAFMT xenografts.
Conclusions: Our findings indicate that c-MET/STAT3-dependent upregulation of c-FLIPL expression is an important escape mechanism following MEKi treatment in BRAFMT colorectal cancer. Thus, combinations of MEKi with inhibitors of c-MET or c-FLIP (e.g., HDAC inhibitors) could be potential novel treatment strategies for BRAFMT colorectal cancer.