973 resultados para Cálculo diferencial e integral
Resumo:
A ênfase algébrica dada ao longo do tempo nos cursos de Cálculo Diferencial e Integral não oportunizou que tratamentos gráficos e numéricos fossem privilegiados, visto a ausência de softwares que possibilitassem uma abordagem diferenciada aos conceitos inerentes a esta disciplina (Richit, 2010, Guimarães, 2001). Contudo, iniciativas no mundo inteiro têm dedicado esforços e desenvolvido softwares que possibilitam explorações qualitativamente diferentes para conceitos de Cálculo a partir de representações gráficas, numéricas ou algébricas envolvendo visualização, a simulação, o aprofundamento do pensamento matemático, conjecturas e validações, etc. Deste modo, a incorporação das tecnologias digitais na aula de Cálculo remove um pouco o fardo da manipulação algébrica, possibilitando a transição entre a ação física (interação do estudante com a tecnologia) e a representação matemática de um conceito. Assim, a proposta de oficina aqui apresentada objetiva explorar conceitos de Cálculo (Funções, Limites, Derivadas e Integrais) em uma perspectiva de investigação com o software GeoGebra.
Resumo:
Neste material é apresentado primeiramente um teorema muito importante que é o teorema do valor médio, com exemplos de aplicação. Na sequência temos a definição de antiderivada ou primitiva de uma função. No segundo tópico segue a definição de integral indefinida e a apresentação de algumas integrais importantes e básicas. Uma tabela de integrais básicas também é disponibilizada. Finalizando, foram listados propriedades e exemplos de integrais.
Resumo:
Livro completo
Resumo:
A apresentaçãp fala inicialmente sobre a existência da derivada num ponto; fala sobre a condição de que uma função ser contínua em a não implica ter derivada em a. Apresenta também exemplos importantes de tais funções. Na sequência apresenta a caracterização das derivadas, derivadas laterais e funções importantes que possuem derivadas (funções constante, linear, polinomial, racional, trigonométrica, logarítmica e exponencial). Para dar andamento são apresentadas as notações que são usadas no cálculo diferencial para derivada de 1ª ordem e de ordem superior assim como derivada de funções elementares. As regras básicas, como derivada da soma, diferença, produto e quociente de funções deriváveis são mostradas e exemplificadas no tópico 3. Na sequência são apresentadas outras definições e propriedades importantes que são: Regra da cadeia; Fórmulas que seguem do uso da regra da cadeia; derivadas implícitas; aplicações (Cálculo das retas tangentes e normais, e dos limites indeterminados).
Resumo:
This article refers to a research which tries to historically (re)construct the conceptual development of the Integral and Differential calculus, taking into account its constructing model feature, since the Greeks to Newton. These models were created by the problems that have been proposed by the history and were being modified by the time the new problems were put and the mathematics known advanced. In this perspective, I also show how a number of nature philosophers and mathematicians got involved by this process. Starting with the speculations over scientific and philosophical natures done by the ancient Greeks, it culminates with Newton s work in the 17th century. Moreover, I present and analyze the problems proposed (open questions), models generated (questions answered) as well as the religious, political, economic and social conditions involved. This work is divided into 6 chapters plus the final considerations. Chapter 1 shows how the research came about, given my motivation and experience. I outline the ways I have gone trough to refine the main question and present the subject of and the objectives of the research, ending the chapter showing the theoretical bases by which the research was carried out, naming such bases as Investigation Theoretical Fields (ITF). Chapter 2 presents each one of the theoretical bases, which was introduced in the chapter 1 s end. In this discuss, I try to connect the ITF to the research. The Chapter 3 discusses the methodological choices done considering the theoretical fields considered. So, the Chapters 4, 5 and 6 present the main corpus of the research, i.e., they reconstruct the calculus history under a perspective of model building (questions answered) from the problems given (open questions), analyzing since the ancient Greeks contribution (Chapter 4), pos- Greek, especially, the Romans contribution, Hindus, Arabian, and the contribution on the Medium Age (Chapter 5). I relate the European reborn and the contribution of the philosophers and scientists until culminate with the Newton s work (Chapter 6). In the final considerations, it finally gives an account on my impressions about the development of the research as well as the results reached here. By the end, I plan out a propose of curse of Differential and Integral Calculus, having by basis the last three chapters of the article
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Educação Matemática - IGCE