987 resultados para Busca tabu


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a tabu search algorithm for solving uncapacitated location problems is presented. The uncapacitated location problem is a classic problem of localization and occurs in many practical situations. The problem consists in determining in a network, at the minimum possible cost, the better localization, in a network, for the installation of facilities in order to attend the customers' associated demands, at the minimum possible cost. One admits that there exists a cost associated with the opening of a facility and a cost of attendance of each customer by any open facilities. In the particular case of the uncapacitated location problem there is no capacity limitation to attend the customers’ demands. There are some parameters in the algorithm that influence the solution’s quality. These parameters were tested and optimal values for them were obtained. The results show that the proposed algorithm is able to find the optimal solution for all small tested problems keeping the compromise between solution’s quality and computational time. However, to solve bigger problems, the structure of the algorithm must be changed in its structure. The implemented algorithm is integrated to a computational platform for solution of logistic problems

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nas últimas décadas, o problema de escalonamento da produção em oficina de máquinas, na literatura referido como JSSP (do inglês Job Shop Scheduling Problem), tem recebido grande destaque por parte de pesquisadores do mundo inteiro. Uma das razões que justificam tamanho interesse está em sua alta complexidade. O JSSP é um problema de análise combinatória classificado como NP-Difícil e, apesar de existir uma grande variedade de métodos e heurísticas que são capazes de resolvê-lo, ainda não existe hoje nenhum método ou heurística capaz de encontrar soluções ótimas para todos os problemas testes apresentados na literatura. A outra razão basea-se no fato de que esse problema encontra-se presente no diaa- dia das indústrias de transformação de vários segmento e, uma vez que a otimização do escalonamento pode gerar uma redução significativa no tempo de produção e, consequentemente, um melhor aproveitamento dos recursos de produção, ele pode gerar um forte impacto no lucro dessas indústrias, principalmente nos casos em que o setor de produção é responsável por grande parte dos seus custos totais. Entre as heurísticas que podem ser aplicadas à solução deste problema, o Busca Tabu e o Multidão de Partículas apresentam uma boa performance para a maioria dos problemas testes encontrados na literatura. Geralmente, a heurística Busca Tabu apresenta uma boa e rápida convergência para pontos ótimos ou subótimos, contudo esta convergência é frequentemente interrompida por processos cíclicos e a performance do método depende fortemente da solução inicial e do ajuste de seus parâmetros. A heurística Multidão de Partículas tende a convergir para pontos ótimos, ao custo de um grande esforço computacional, sendo que sua performance também apresenta uma grande sensibilidade ao ajuste de seus parâmetros. Como as diferentes heurísticas aplicadas ao problema apresentam pontos positivos e negativos, atualmente alguns pesquisadores começam a concentrar seus esforços na hibridização das heurísticas existentes no intuito de gerar novas heurísticas híbridas que reúnam as qualidades de suas heurísticas de base, buscando desta forma diminuir ou mesmo eliminar seus aspectos negativos. Neste trabalho, em um primeiro momento, são apresentados três modelos de hibridização baseados no esquema geral das Heurísticas de Busca Local, os quais são testados com as heurísticas Busca Tabu e Multidão de Partículas. Posteriormente é apresentada uma adaptação do método Colisão de Partículas, originalmente desenvolvido para problemas contínuos, onde o método Busca Tabu é utilizado como operador de exploração local e operadores de mutação são utilizados para perturbação da solução. Como resultado, este trabalho mostra que, no caso dos modelos híbridos, a natureza complementar e diferente dos métodos Busca Tabu e Multidão de Partículas, na forma como são aqui apresentados, da origem à algoritmos robustos capazes de gerar solução ótimas ou muito boas e muito menos sensíveis ao ajuste dos parâmetros de cada um dos métodos de origem. No caso do método Colisão de Partículas, o novo algorítimo é capaz de atenuar a sensibilidade ao ajuste dos parâmetros e de evitar os processos cíclicos do método Busca Tabu, produzindo assim melhores resultados.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta pesquisa consiste na solução do problema inverso de transferência radiativa para um meio participante (emissor, absorvedor e/ou espalhador) homogêneo unidimensional em uma camada, usando-se a combinação de rede neural artificial (RNA) com técnicas de otimização. A saída da RNA, devidamente treinada, apresenta os valores das propriedades radiativas [ω, τ0, ρ1 e ρ2] que são otimizadas através das seguintes técnicas: Particle Collision Algorithm (PCA), Algoritmos Genéticos (AG), Greedy Randomized Adaptive Search Procedure (GRASP) e Busca Tabu (BT). Os dados usados no treinamento da RNA são sintéticos, gerados através do problema direto sem a introdução de ruído. Os resultados obtidos unicamente pela RNA, apresentam um erro médio percentual menor que 1,64%, seria satisfatório, todavia para o tratamento usando-se as quatro técnicas de otimização citadas anteriormente, os resultados tornaram-se ainda melhores com erros percentuais menores que 0,04%, especialmente quando a otimização é feita por AG.