974 resultados para Bus load forecasting
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Multinodal load forecasting deals with the loads of several interest nodes in an electrical network system, which is also known as bus load forecasting. To perform this demand, it is necessary a technique that is precise, trustable and has a short-time processing. This paper proposes two methodologies based on general regression neural networks for short-term multinodal load forecasting. The first individually forecast the local loads and the second forecast the global load and individually forecast the load participation factors to estimate the local loads. To design the forecasters it wasn't necessary the previous study of the local loads. Tests were made using a New Zealand distribution subsystem and the results obtained are compatible with the ones founded in the specialized literature. © 2011 IEEE.
Resumo:
Artificial neural networks (ANNs) can be easily applied to short-term load forecasting (STLF) models for electric power distribution applications. However, they are not typically used in medium and long term load forecasting (MLTLF) electric power models because of the difficulties associated with collecting and processing the necessary data. Virtual instrument (VI) techniques can be applied to electric power load forecasting but this is rarely reported in the literature. In this paper, we investigate the modelling and design of a VI for short, medium and long term load forecasting using ANNs. Three ANN models were built for STLF of electric power. These networks were trained using historical load data and also considering weather data which is known to have a significant affect of the use of electric power (such as wind speed, precipitation, atmospheric pressure, temperature and humidity). In order to do this a V-shape temperature processing model is proposed. With regards MLTLF, a model was developed using radial basis function neural networks (RBFNN). Results indicate that the forecasting model based on the RBFNN has a high accuracy and stability. Finally, a virtual load forecaster which integrates the VI and the RBFNN is presented.
Resumo:
Load forecasting has gradually becoming a major field of research in electricity industry. Therefore, Load forecasting is extremely important for the electric sector under deregulated environment as it provides a useful support to the power system management. Accurate power load forecasting models are required to the operation and planning of a utility company, and they have received increasing attention from researches of this field study. Many mathematical methods have been developed for load forecasting. This work aims to develop and implement a load forecasting method for short-term load forecasting (STLF), based on Holt-Winters exponential smoothing and an artificial neural network (ANN). One of the main contributions of this paper is the application of Holt-Winters exponential smoothing approach to the forecasting problem and, as an evaluation of the past forecasting work, data mining techniques are also applied to short-term Load forecasting. Both ANN and Holt-Winters exponential smoothing approaches are compared and evaluated.
Resumo:
Load forecasting is an important task in the management of a power utility. The most recent developments in forecasting involve the use of artificial intelligence techniques, which offer powerful modelling capabilities. This paper discusses these techniques and provides a review of their application to load forecasting.
Resumo:
Abstract We present a refined parametric model for forecasting electricity demand which performed particularly well in the recent Global Energy Forecasting Competition (GEFCom 2012). We begin by motivating and presenting a simple parametric model, treating the electricity demand as a function of the temperature and day of the data. We then set out a series of refinements of the model, explaining the rationale for each, and using the competition scores to demonstrate that each successive refinement step increases the accuracy of the model’s predictions. These refinements include combining models from multiple weather stations, removing outliers from the historical data, and special treatments of public holidays.
Resumo:
The paper describes a novel neural model to electrical load forecasting in transformers. The network acts as identifier of structural features to forecast process. So that output parameters can be estimated and generalized from an input parameter set. The model was trained and assessed through load data extracted from a Brazilian Electric Utility taking into account time, current, tension, active power in the three phases of the system. The results obtained in the simulations show that the developed technique can be used as an alternative tool to become more appropriate for planning of electric power systems.
Resumo:
The objective of this work is to develop a methodology for electric load forecasting based on a neural network. Here, backpropagation algorithm is used with an adaptive process that based on fuzzy logic and using a decaying exponential function to avoid instability in the convergence process. This methodology results in fast training, when compared to the conventional formulation of backpropagation algorithm. The results are presented using data from a Brazilian Electric Company, and shows a very good performance for the proposal objective.
Resumo:
This work presents a neural network based on the ART architecture ( adaptive resonance theory), named fuzzy ART& ARTMAP neural network, applied to the electric load-forecasting problem. The neural networks based on the ARTarchitecture have two fundamental characteristics that are extremely important for the network performance ( stability and plasticity), which allow the implementation of continuous training. The fuzzy ART& ARTMAP neural network aims to reduce the imprecision of the forecasting results by a mechanism that separate the analog and binary data, processing them separately. Therefore, this represents a reduction on the processing time and improved quality of the results, when compared to the Back-Propagation neural network, and better to the classical forecasting techniques (ARIMA of Box and Jenkins methods). Finished the training, the fuzzy ART& ARTMAP neural network is capable to forecast electrical loads 24 h in advance. To validate the methodology, data from a Brazilian electric company is used. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A method for spatial electric load forecasting using elements from evolutionary algorithms is presented. The method uses concepts from knowledge extraction algorithms and linguistic rules' representation to characterize the preferences for land use into a spatial database. The future land use preferences in undeveloped zones in the electrical utility service area are determined using an evolutionary heuristic, which considers a stochastic behavior by crossing over similar rules. The method considers development of new zones and also redevelopment of existing ones. The results are presented in future preference maps. The tests in a real system from a midsized city show a high rate of success when results are compared with information gathered from the utility planning department. The most important features of this method are the need for few data and the simplicity of the algorithm, allowing for future scalability.
Resumo:
A multi-agent framework for spatial electric load forecasting, especially suited to simulate the different dynamics involved on distribution systems, is presented. The service zone is divided into several sub-zones, each subzone is considered as an independent agent identified with a corresponding load level, and their relationships with the neighbor zones are represented as development probabilities. With this setting, different kind of agents can be developed to simulate the growth pattern of the loads in distribution systems. This paper presents two different kinds of agents to simulate different situations, presenting some promissory results.