980 resultados para Burst swimming


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The warming of coastal oceans due to climate change is increasing the overwinter survival of tropical fishes transported to temperate latitudes by ocean currents. However, the processes governing early post-arrival mortality are complex and can result in minimum threshold temperatures for overwinter survival, which are greater than those predicted based upon physiological temperature tolerances alone. This 3.5 mo laboratory study monitored the early performance of a tropical damselfish Abudefduf vaigiensis that occurs commonly during austral summer along the SE Australian coast, under nominal summer and winter water temperatures, and compares results with a co-occurring year-round resident of the same family, Parma microlepis. Survivorship, feeding rate, growth and burst swimming ability (as a measure of predator escape ability) were all reduced for the tropical species at winter water temperatures compared to those in summer, whereas the temperate species experienced no mortality and only feeding rate was reduced at colder temperatures. These results suggest that observed minimum threshold survival temperatures may be greater than predicted by physiology alone, due to lowered food intake combined with increased predation risk (a longer time at vulnerable sizes and reduced escape ability). Overwinter survival is a significant hurdle in pole-ward range expansions of tropical fishes, and a better understanding of its complex processes will allow for more accurate predictions of changes in biodiversity as coastal ocean temperatures continue to increase due to climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During metamorphosis, most amphibians undergo rapid shifts in their morphology that allow them to move from an aquatic to a more terrestrial existence. Two important challenges associated with this shift in habitat are the necessity to switch from an aquatic to terrestrial mode of locomotion and changes in the thermal environment. In this study, I investigated the consequences of metamorphosis to the burst swimming and running performance of the European newt Triturus cristatus to determine the nature and magnitude of any locomotor trade-offs that occur across life-history stages. In addition, I investigated whether there were any shifts in the thermal dependence of performance between life-history stages of T. cristatus to compensate for changes in their thermal environment during metamorphosis. A trade-off between swimming and running performance was detected across life-history stages, with metamorphosis resulting in a simultaneous decrease in swimming and increase in running performance. Although the terrestrial habitat of postmetamorphic stages of the newt T. cristatus experienced greater daily fluctuations in temperature than the aquatic habitat of the larval stage, no differences in thermal sensitivity of locomotor performance were detected between the larval aquatic and postmetamorphic stages. The absence of variation across life-history stages of T. cristatus may indicate that thermal sensitivity may be a conservative trait across ontogenetic stages in amphibians, but further studies are required to investigate this assertion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

All copulations in the eastern mosquitofish, Gambusia holbrooki, are coercive-and-achieved by force. Female G. holbrooki never appear to cooperate with males, but vigorously resist matings at all times. We examined the role of females within a sexually coercive mating system by investigating the ability of female G. holbrooki to resist forced copulations after acclimation to 16 degrees C and 32 degrees C for 4-5 weeks. We also examined burst swimming performance of female G. holbrooki after acclimation, as this trait is likely to underlie a female's ability to resist forced matings. We predicted that if female G. holbrooki indiscriminately resist matings from all males, acclimation would enhance female resistance at their acclimation temperature. However, we found that it did not. We also predicted that if females are able to influence the outcome of mating interactions, acclimation to an optimal thermal environment may induce females to reduce resistance. In support of this prediction, females acclimated at 32 degrees C were able to modify their resistance behaviour between exposure to 16 degrees C and 32 degrees C. The rate of copulations experienced by 32 inverted perpendicular C-acclimated females was 2.5 times greater at 32 degrees C than at 16 degrees C. In addition, acclimation at 32 degrees C significantly enhanced burst swimming performance at 32 degrees C but no effect of acclimation was observed at 16 degrees C. Our results suggest that female G. holbrooki are able to play a greater role in determining the outcome of sexual coercive mating interactions than previously thought. (c) 2006 The Association for the Shidy of Animal Behavioor. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract—Burst-and-coast is the most common locomotion type in freely routine swimming of koi carps (Cyprinus carpio koi), which consists of a burst phase and a coast phase in each cycle and mostly leads to a straight-line trajectory. Combining with the tracking experiment, the flow physics of koi carp’s burst-andcoast swimming is investigated using a novel integrated CFD method solving the body-fluid interaction problem. The dynamical equations of a deforming body are formulated. Following that, the loose-coupled equations of the body dynamics and the fluid dynamics are numerically solved with the integrated method. The two burst modes, MT (Multiple Tail-beat) and HT (Half Tail-beat), which have been reported by the experiments, are investigated by numerical simulations in this paper. The body kinematics is predicted and the flow physics is visualized, which are in good agreement with the corresponding experiments. Furthermore, the optimization on the energy cost and several critical control mechanisms in burst-and-coast swimming of koi carps are explored, by varying the parameters in its selfpropelled swimming. In this paper, energetics is measured by the two mechanical quantities, total output power CP and Froude efficiency Fr. Results and discussion show that from the standpoint of mechanical energy, burst-and-coast swimming does not actually save energy comparing with steady swimming at the same average speed, in that frequently changing of speed leads to decrease of efficiency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The importance of studying individual variation in locomotor performance has long been recognized as it may determine the ability of an organism to escape from predators, catch prey or disperse. In ectotherms, locomotor performance is highly influenced by ambient temperature (Ta), yet several studies have showed that individual differences are usually retained across a Ta gradient. Less is known, however, about individual differences in thermal sensitivity of performance, despite the fact that it could represent adaptive sources of phenotypic variation and/or additional substrate for selection to act upon. We quantified swimming and jumping performance in 18 wild-caught tropical clawed frogs (Xenopus tropicalis) across a Ta gradient. Maximum swimming velocity and acceleration were not repeatable and individuals did not differ in how their swimming performance varied across Ta. By contrast, time and distance jumped until exhaustion were repeatable across the Ta gradient, indicating that individuals that perform best at a given Ta also perform best at another Ta. Moreover, thermal sensitivity of jumping endurance significantly differed among individuals, with individuals of high performance at low Ta displaying the highest sensitivity to Ta. Individual differences in terrestrial performance increased with decreasing Ta, which is opposite to results obtained in lizards at the inter-specific and among-individual levels. To verify the generality of these patterns, we need more studies on individual variation in thermal reaction norms for locomotor performance in lizards and frogs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Size-related differences in power production and swim speed duration may contribute to the observed deficit of nursing calves in relation to lactating females killed in sets by tuna purse-seiners in the eastern tropical Pacific Ocean (ETP). Power production and swim-speed duration were estimated for northeastern spotted dolphins (Stenella attenuata), the species (neonate through adult) most often captured by the fishery. Power required by neonates to swim unassisted was 3.6 times that required of an adult to swim the same speed. Estimated unassisted burst speed for neonates is only about 3 m/s compared to about 6 m/s for adults. Estimated long-term sustainable speed is about 1 m/s for neonates compared to about 2.5 m/s for adults. Weight-specific power requirements decrease as dolphin calves increase in size, but power estimates for 2-year-old spotted dolphin calves are still about 40% higher than power estimates for adults, to maintain the same speed. These estimated differences between calves and adults are conservative because the calculations do not include accommodation for reduced aerobic capacity in dolphin calves compared to adults. Discrepancies in power production are probably ameliorated under normal circumstances by calves drafting next to their mothers, and by employing burst-coast or leap-burst-coast swimming, but the relatively high speeds associated with evasion behaviors during and after tuna sets likely diminish use of these energy-saving strategies by calves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Billfishes are considered among the fastest swimmers in the oceans. Despite early estimates of extremely high speeds, more recent work showed that these predators (e.g., blue marlin) spend most of their time swimming slowly, rarely exceeding 2 m s(-1). Predator-prey interactions provide a context within which one may expect maximal speeds both by predators and prey. Beyond speed, however, an important component determining the outcome of predator-prey encounters is unsteady swimming (i.e., turning and accelerating). Although large predators are faster than their small prey, the latter show higher performance in unsteady swimming. To contrast the evading behaviors of their highly maneuverable prey, sailfish and other large aquatic predators possess morphological adaptations, such as elongated bills, which can be moved more rapidly than the whole body itself, facilitating capture of the prey. Therefore, it is an open question whether such supposedly very fast swimmers do use high-speed bursts when feeding on evasive prey, in addition to using their bill for slashing prey. Here, we measured the swimming behavior of sailfish by using high-frequency accelerometry and high-speed video observations during predator-prey interactions. These measurements allowed analyses of tail beat frequencies to estimate swimming speeds. Our results suggest that sailfish burst at speeds of about 7 m s(-1) and do not exceed swimming speeds of 10 m s(-1) during predator-prey interactions. These speeds are much lower than previous estimates. In addition, the oscillations of the bill during swimming with, and without, extension of the dorsal fin (i.e., the sail) were measured. We suggest that extension of the dorsal fin may allow sailfish to improve the control of the bill and minimize its yaw, hence preventing disturbance of the prey. Therefore, sailfish, like other large predators, may rely mainly on accuracy of movement and the use of the extensions of their bodies, rather than resorting to top speeds when hunting evasive prey.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swimming at patrolled beaches reduces the likelihood of drownings and near-drownings. The present study tested the theory of planned behaviour (TPB), with the addition of risk perceptions, in predicting people’s intentions to swim between the flags at patrolled beaches. We examined also the predictors of people’s willingness to swim [1] up to 10 metres and [2] more than 10 metres outside of the patrol flags. Participants (N = 526) completed measures of attitudes, subjective norm, perceived behavioural control (PBC), intentions/willingness, and both objective and subjective risk perceptions. Two weeks later, a sub-sample of participants reported on their beach swimming behaviour for the previous fortnight. Attitude and subjective norm predicted intentions to swim between and willingness to swim outside of the flags. Age and PBC influenced willingness to swim beyond the flags. Objective risk predicted willingness to swim beyond the flags (both distances) while subjective risk predicted willingness to swim up to 10 metres outside the flags. People’s intentions to swim between the flags were correlated with their behaviour at follow-up. This study provides a preliminary investigation into an important safety behaviour and identifies factors to target when promoting safe swimming behaviours to prevent drowning deaths on Australian beaches.