995 resultados para Building failures.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
Includes indexes.
Resumo:
Errata sheet at end.
Resumo:
Aftermath of the Great Flood of 1908 in Albion, Mich.
Resumo:
Both in developed and developing economies, major public funding is invested in civil infrastructure assets. Efficiency and comfort level of expected and demanded living standards are largely dependant on the management strategies of these assets. Buildings are one of the major & vital assets, which need to be maintained primarily to ensure its functionality by effective & efficient delivery of services and to optimize economic benefits. Not withstanding, public building infrastructure is not considered in Infrastructure report card published by Australian Infrastructure Report Card Alliance Partners (2001). The reason appears to be not having enough data to rate public building infrastructure. American Infrastructure Report Card (2001) gave “School Buildings” ‘d-’ rating, which is below ‘poor’. For effective asset management of building infrastructure, a need emerged to optimise the budget for managing assets, to cope up with increased user expectations, to response effectively to possible asset failures, to deal with ageing of assets and aging populations and to treat other scenarios including technology advancement and non-asset solutions. John (Asset Management, 2001) suggests that in the area of asset management worldwide, UK, Australia and New Zealand are leading.
Resumo:
The National Energy Efficient Building Project (NEEBP) Phase One report, published in December 2014, investigated “process issues and systemic failures in the administration of the energy performance requirements in the National Construction Code. It found that most stakeholders believed that under-compliance with these requirements is widespread across Australia, with similar issues being reported in all states and territories. The report found that many different factors were contributing to this outcome and, as a result, many recommendations were offered that together would be expected to remedy the systemic issues reported. To follow up on this Phase 1 report, three additional projects were commissioned as part of Phase 2 of the overall NEEBP project. This Report deals with the development and piloting of an Electronic Building Passport (EBP) tool – a project undertaken jointly by pitt&sherry and a team at the Queensland University of Technology (QUT) led by Dr Wendy Miller. The other Phase 2 projects cover audits of Class 1 buildings and issues relating to building alterations and additions. The passport concept aims to provide all stakeholders with (controlled) access to the key documentation and information that they need to verify the energy performance of buildings. This trial project deals with residential buildings but in principle could apply to any building type. Nine councils were recruited to help develop and test a pilot electronic building passport tool. The participation of these councils – across all states – enabled an assessment of the extent to which these councils are currently utilising documentation; to track the compliance of residential buildings with the energy performance requirements in the National Construction Code (NCC). Overall we found that none of the participating councils are currently compiling all of the energy performance-related documentation that would demonstrate code compliance. The key reasons for this include: a major lack of clarity on precisely what documentation should be collected; cost and budget pressures; low public/stakeholder demand for the documentation; and a pragmatic judgement that non-compliance with any regulated documentation requirements represents a relatively low risk for them. Some councils reported producing documentation, such as certificates of final completion, only on demand, for example. Only three of the nine council participants reported regularly conducting compliance assessments or audits utilising this documentation and/or inspections. Overall we formed the view that documentation and information tracking processes operating within the building standards and compliance system are not working to assure compliance with the Code’s energy performance requirements. In other words the Code, and its implementation under state and territory regulatory processes, is falling short as a ‘quality assurance’ system for consumers. As a result it is likely that the new housing stock is under-performing relative to policy expectations, consuming unnecessary amounts of energy, imposing unnecessarily high energy bills on occupants, and generating unnecessary greenhouse gas emissions. At the same time, Councils noted that the demand for documentation relating to building energy performance was low. All the participant councils in the EBP pilot agreed that documentation and information processes need to work more effectively if the potential regulatory and market drivers towards energy efficient homes are to be harnessed. These findings are fully consistent with the Phase 1 NEEBP report. It was also agreed that an EBP system could potentially play an important role in improving documentation and information processes. However, only one of the participant councils indicated that they might adopt such a system on a voluntary basis. The majority felt that such a system would only be taken up if it were: - A nationally agreed system, imposed as a mandatory requirement under state or national regulation; - Capable of being used by multiple parties including councils, private certifiers, building regulators, builders and energy assessors in particular; and - Fully integrated into their existing document management systems, or at least seamlessly compatible rather than a separate, unlinked tool. Further, we note that the value of an EBP in capturing statistical information relating to the energy performance of buildings would be much greater if an EBP were adopted on a nationally consistent basis. Councils were clear that a key impediment to the take up of an EBP system is that they are facing very considerable budget and staffing challenges. They report that they are often unable to meet all community demands from the resources available to them. Therefore they are unlikely to provide resources to support the roll out of an EBP system on a voluntary basis. Overall, we conclude from this pilot that the public good would be well served if the Australian, state and territory governments continued to develop and implement an Electronic Building Passport system in a cost-efficient and effective manner. This development should occur with detailed input from building regulators, the Australian Building Codes Board (ABCB), councils and private certifiers in the first instance. This report provides a suite of recommendations (Section 7.2) designed to advance the development and guide the implementation of a national EBP system.
Resumo:
Urbanisation is the great driving force of the twenty-first century. Cities are associated with both productivity and creativity, and the benefits offered by closely connected and high density living and working contribute to sustainability. At the same time, cities need extensive infrastructure – like water, power, sanitation and transportation systems – to operate effectively. Cities therefore comprise multiple components, forming both static and dynamic systems that are interconnected directly and indirectly on a number of levels, all forming the backdrop for the interaction of people and processes. Bringing together large numbers of people and complex products in rich interactions can lead to vulnerability from hazards, threats and even trends, whether natural hazards, epidemics, political upheaval, demographic changes, economic instability and/or mechanical failures; The key to countering vulnerability is the identification of critical systems and clear understanding of their interactions and dependencies. Critical systems can be assessed methodically to determine the implications of their failure and their interconnectivities with other systems to identify options. The overriding need is to support resilience – defined here as the degree to which a system or systems can continue to function effectively in a changing environment. Cities need to recognise the significance of devising adaptation strategies and processes to address a multitude of uncertainties relating to climate, economy, growth and demography. In this paper we put forward a framework to support cities in understanding the hazards, threats and trends that can make them vulnerable to unexpected changes and unpredictable shocks. The framework draws on an asset model of the city, in which components that contribute to resilience include social capital, economic assets, manufactured assets, and governance. The paper reviews the field, and draws together an overarching framework intended to help cities plan a robust trajectory towards increased resilience through flexibility, resourcefulness and responsiveness. It presents some brief case studies demonstrating the applicability of the proposed framework to a wide variety of circumstances.
Resumo:
Cross-sectoral interorganizational relationships in post-conflict situations occur regularly. Whether formal task forces, advisory groups or other ad hoc arrangements, these relations take place in chaotic and dangerous situations with urgent and turbulent political, economic and social environments. Furthermore, they typically involve a large number of players from many different nations, operating across sectors, and between multiple layers of bureaucracy and diplomacy. The organizational complexity staggers many participants and observers, as do the tasks they are charged with completing. Reform efforts in Bosnia and Herzegovina starting in 1995 may serve as the archetype model of conflict, transition and development for the 21st century. It wins this honor due not to its particular programmatic successes and failures, rather to the interorganizational complexity of the International Community. From the massive response to the crisis, to the modern nation-building policies it spawned, and the development assistance practices and institutional arrangements it created, the Bosnian development experience has much to offer by way of lessons learned. This manuscript frames the unique Bosnian development situation, and provides lessons learned from the experience of nation building given local realities. Pettigrew (1992) called this "contextualizing." While network and/or organizational structure, strategy and process explain many interorganizational relationship issues, the development variables identified in this manuscript prove equally important, yet elusive and difficult to measure despite their very real and overt presence.
Resumo:
La presente tesis doctoral se enmarca dentro del concepto de la sistematización del conocimiento en arquitectura, más concretamente en el campo de las construcciones arquitectónicas y la toma de decisiones en la fase de proyecto de envolventes arquitectónicas multicapa. Por tanto, el objetivo principal es el establecimiento de las bases para una toma de decisiones informadas durante el proyecto de una envolvente multicapa con el fin de colaborar en su optimización. Del mismo modo que la historia de la arquitectura está relacionada con la historia de la innovación en construcción, la construcción está sujeta a cambios como respuesta a los fracasos anteriores. En base a esto, se identifica la toma de decisiones en la fase de proyecto como el estadio inicial para establecer un punto estratégico de reflexión y de control sobre los procesos constructivos. La presente investigación, conceptualmente, define los parámetros intervinientes en el proyecto de envolventes arquitectónicas multicapa a partir de una clasificación y sistematización de todos los componentes (elementos, unidades y sistemas constructivos) utilizados en las fachadas multicapa. Dicha sistematización se materializa en una hoja matriz de datos en la que, dentro de una organización a modo de árbol, se puede acceder a la consulta de cada componente y de su caracterización. Dicha matriz permite la incorporación futura de cualquier componente o sistema nuevo que aparezca en el mercado, relacionándolo con aquellos con los que comparta ubicación, tipo de material, etc. Con base en esa matriz de datos, se diseña la sistematización de la toma de decisiones en la fase de proyecto de una envolvente arquitectónica, en concreto, en el caso de una fachada. Operativamente, el resultado se presenta como una herramienta que permite al arquitecto o proyectista reflexionar y seleccionar el sistema constructivo más adecuado, al enfrentarse con las distintas decisiones o elecciones posibles. La herramienta se basa en las elecciones iniciales tomadas por el proyectista y se estructura, a continuación y sucesivamente, en distintas aproximaciones, criterios, subcriterios y posibilidades que responden a los distintos avances en la definición del sistema constructivo. Se proponen una serie de fichas operativas de comprobación que informan sobre el estadio de decisión y de definición de proyecto alcanzados en cada caso. Asimismo, el sistema permite la conexión con otros sistemas de revisión de proyectos para fomentar la reflexión sobre la normalización de los riesgos asociados tanto al proprio sistema como a su proceso constructivo y comportamiento futuros. La herramienta proporciona un sistema de ayuda para ser utilizado en el proceso de toma de decisiones en la fase de diseño de una fachada multicapa, minimizando la arbitrariedad y ofreciendo una cualificación previa a la cuantificación que supondrá la elaboración del detalle constructivo y de su medición en las sucesivas fases del proyecto. Al mismo tiempo, la sistematización de dicha toma de decisiones en la fase del proyecto puede constituirse como un sistema de comprobación en las diferentes fases del proceso de decisión proyectual y de definición de la envolvente de un edificio. ABSTRACT The central issue of this doctoral Thesis is founded on the framework of the concept of the systematization of knowledge in architecture, in particular, in respect of the field of building construction and the decision making in the design stage of multilayer building envelope projects. Therefore, the main objective is to establish the bases for knowledgeable decision making during a multilayer building envelope design process, in order to collaborate with its optimization. Just as the history of architecture is connected to the history of innovation in construction, construction itself is subject to changes as a response to previous failures. On this basis, the decisions made during the project design phase are identified as the initial state to establish an strategic point for reflection and control, referred to the constructive processes. Conceptually, this research defines the parameters involving the multilayer building envelope projects, on the basis of a classification and systematization for all the components (elements, constructive units and constructive systems) used in multilayer façades. The mentioned systematization is materialized into a data matrix sheet in which, following a tree‐like organization, the access to every single component and its characterization is possible. The above data matrix allows the future inclusion of any new component or system that may appear in the construction market. That new component or system can be put into a relationship with another, which it shares location, type of material,… with. Based on the data matrix, the systematization of the decision making process for a building envelope design stage is designed, more particularly in the case of a façade. Putting this into practice, it is represented as a tool which allows the architect or the designer, to reflect and to select the appropriate building system when facing the different elections or the different options. The tool is based on the initial elections taken by the designer. Then and successively, it is shaped on the form of different operative steps, criteria, sub‐criteria and possibilities which respond to a different progress in the definition of the building construction system. In order to inform about the stage of the decision and the definition reached by the project in every particular case, a range of operative sheets are proposed. Additionally, the system allows the connection with other reviewing methods for building projects. The aim of this last possibility is to encourage the reflection on standardization of the associated risks to the building system itself and its future performance. The tool provides a helping system to be used during the decision making process for a multilayer façade design. It minimizes the arbitrariness and offers a qualification previous to the quantification that will be done with the development of the construction details and their bill of quantities, that in subsequent project stages will be executed. At the same time, the systematization of the mentioned decision making during the design phase, can be found as a checking system in the different stages of the decision making design process and in the different stages of the building envelope definition.