988 resultados para Building detection
Resumo:
An approach and strategy for automatic detection of buildings from aerial images using combined image analysis and interpretation techniques is described in this paper. It is undertaken in several steps. A dense DSM is obtained by stereo image matching and then the results of multi-band classification, the DSM, and Normalized Difference Vegetation Index (NDVI) are used to reveal preliminary building interest areas. From these areas, a shape modeling algorithm has been used to precisely delineate their boundaries. The Dempster-Shafer data fusion technique is then applied to detect buildings from the combination of three data sources by a statistically-based classification. A number of test areas, which include buildings of different sizes, shape, and roof color have been investigated. The tests are encouraging and demonstrate that all processes in this system are important for effective building detection.
Resumo:
In this paper, we describe the evaluation of a method for building detection by the Dempster-Shafer fusion of LIDAR data and multispectral images. For that purpose, ground truth was digitised for two test sites with quite different characteristics. Using these data sets, the heuristic model for the probability mass assignments of the method is validated, and rules for the tuning of the parameters of this model are discussed. Further we evaluate the contributions of the individual cues used in the classification process to the quality of the classification results. Our results show the degree to which the overall correctness of the results can be improved by fusing LIDAR data with multispectral images.
Resumo:
Semi-automatic building detection and extraction is a topic of growing interest due to its potential application in such areas as cadastral information systems, cartographic revision, and GIS. One of the existing strategies for building extraction is to use a digital surface model (DSM) represented by a cloud of known points on a visible surface, and comprising features such as trees or buildings. Conventional surface modeling using stereo-matching techniques has its drawbacks, the most obvious being the effect of building height on perspective, shadows, and occlusions. The laser scanner, a recently developed technological tool, can collect accurate DSMs with high spatial frequency. This paper presents a methodology for semi-automatic modeling of buildings which combines a region-growing algorithm with line-detection methods applied over the DSM.
Resumo:
This paper presents a framework to build medical training applications by using virtual reality and a tool that helps the class instantiation of this framework. The main purpose is to make easier the building of virtual reality applications in the medical training area, considering systems to simulate biopsy exams and make available deformation, collision detection, and stereoscopy functionalities. The instantiation of the classes allows quick implementation of the tools for such a purpose, thus reducing errors and offering low cost due to the use of open source tools. Using the instantiation tool, the process of building applications is fast and easy. Therefore, computer programmers can obtain an initial application and adapt it to their needs. This tool allows the user to include, delete, and edit parameters in the functionalities chosen as well as storing these parameters for future use. In order to verify the efficiency of the framework, some case studies are presented.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
The development of forensic intelligence relies on the expression of suitable models that better represent the contribution of forensic intelligence in relation to the criminal justice system, policing and security. Such models assist in comparing and evaluating methods and new technologies, provide transparency and foster the development of new applications. Interestingly, strong similarities between two separate projects focusing on specific forensic science areas were recently observed. These observations have led to the induction of a general model (Part I) that could guide the use of any forensic science case data in an intelligence perspective. The present article builds upon this general approach by focusing on decisional and organisational issues. The article investigates the comparison process and evaluation system that lay at the heart of the forensic intelligence framework, advocating scientific decision criteria and a structured but flexible and dynamic architecture. These building blocks are crucial and clearly lay within the expertise of forensic scientists. However, it is only part of the problem. Forensic intelligence includes other blocks with their respective interactions, decision points and tensions (e.g. regarding how to guide detection and how to integrate forensic information with other information). Formalising these blocks identifies many questions and potential answers. Addressing these questions is essential for the progress of the discipline. Such a process requires clarifying the role and place of the forensic scientist within the whole process and their relationship to other stakeholders.
Resumo:
Melodic motifs form essential building blocks in Indian Classical music. The motifs, or key phrases, providestrong cues to the identity of the underlying raga in both Hindustani and Carnatic styles of Indian music. Automatic identification and clustering of similar motifs is relevant in this context. The inherent variations in various instances of a characteristic phrase in a bandish (composition)performance make it challenging to identify similar phrases in a performance. A nyas svara (long note)marks the ending of these phrases. The proposed method does segmentation of phrases through identification ofnyas and computes similarity with the reference characteristic phrase.
Resumo:
Glucose is the primary source of energy for the brain but also an important source of building blocks for proteins, lipids, and nucleic acids. Little is known about the use of glucose for biosynthesis in tissues at the cellular level. We demonstrate that local cerebral metabolic activity can be mapped in mouse brain tissue by quantitatively imaging the biosynthetic products deriving from [U-(13)C]glucose metabolism using a combination of in situ electron microscopy and secondary ion mass-spectroscopy (NanoSIMS). Images of the (13)C-label incorporated into cerebral ultrastructure with ca. 100nm resolution allowed us to determine the timescale on which the metabolic products of glucose are incorporated into different cells, their sub-compartments and organelles. These were mapped in astrocytes and neurons in the different layers of the motor cortex. We see evidence for high metabolic activity in neurons via the nucleus (13)C enrichment. We observe that in all the major cell compartments, such as e.g. nucleus and Golgi apparatus, neurons incorporate substantially higher concentrations of (13)C-label than astrocytes.
Resumo:
ABSTRACT This study aimed to identify wavelengths based on leaf reflectance (400-1050 nm) to estimate white mold severity in common beans at different seasons. Two experiments were carried out, one during fall and another in winter. Partial Least Squares (PLS) regression was used to establish a set of wavelengths that better estimates the disease severity at a specific date. Therefore, observations were previously divided in two sub-groups. The first one (calibration) was used for model building and the second subgroup for model testing. Error measurements and correlation between measured and predicted values of disease severity index were employed to provide the best wavelengths in both seasons. The average indexes of each experiment were of 5.8% and 7.4%, which is considered low. Spectral bands ranged between blue and green, green and red, and red and infrared, being most sensitive for disease estimation. Beyond the transition ranges, other spectral regions also presented wavelengths with potential to determine the disease severity, such as red, green, and near infrared.
Resumo:
Leveraging cloud services, companies and organizations can significantly improve their efficiency, as well as building novel business opportunities. Cloud computing offers various advantages to companies while having some risks for them too. Advantages offered by service providers are mostly about efficiency and reliability while risks of cloud computing are mostly about security problems. Problems with security of the cloud still demand significant attention in order to tackle the potential problems. Security problems in the cloud as security problems in any area of computing, can not be fully tackled. However creating novel and new solutions can be used by service providers to mitigate the potential threats to a large extent. Looking at the security problem from a very high perspective, there are two focus directions. Security problems that threaten service user’s security and privacy are at one side. On the other hand, security problems that threaten service provider’s security and privacy are on the other side. Both kinds of threats should mostly be detected and mitigated by service providers. Looking a bit closer to the problem, mitigating security problems that target providers can protect both service provider and the user. However, the focus of research community mostly is to provide solutions to protect cloud users. A significant research effort has been put in protecting cloud tenants against external attacks. However, attacks that are originated from elastic, on-demand and legitimate cloud resources should still be considered seriously. The cloud-based botnet or botcloud is one of the prevalent cases of cloud resource misuses. Unfortunately, some of the cloud’s essential characteristics enable criminals to form reliable and low cost botclouds in a short time. In this paper, we present a system that helps to detect distributed infected Virtual Machines (VMs) acting as elements of botclouds. Based on a set of botnet related system level symptoms, our system groups VMs. Grouping VMs helps to separate infected VMs from others and narrows down the target group under inspection. Our system takes advantages of Virtual Machine Introspection (VMI) and data mining techniques.
Resumo:
The classical computer vision methods can only weakly emulate some of the multi-level parallelisms in signal processing and information sharing that takes place in different parts of the primates’ visual system thus enabling it to accomplish many diverse functions of visual perception. One of the main functions of the primates’ vision is to detect and recognise objects in natural scenes despite all the linear and non-linear variations of the objects and their environment. The superior performance of the primates’ visual system compared to what machine vision systems have been able to achieve to date, motivates scientists and researchers to further explore this area in pursuit of more efficient vision systems inspired by natural models. In this paper building blocks for a hierarchical efficient object recognition model are proposed. Incorporating the attention-based processing would lead to a system that will process the visual data in a non-linear way focusing only on the regions of interest and hence reducing the time to achieve real-time performance. Further, it is suggested to modify the visual cortex model for recognizing objects by adding non-linearities in the ventral path consistent with earlier discoveries as reported by researchers in the neuro-physiology of vision.
Resumo:
This paper describes the development and validation of a novel web-based interface for the gathering of feedback from building occupants about their environmental discomfort including signs of Sick Building Syndrome (SBS). The gathering of such feedback may enable better targeting of environmental discomfort down to the individual as well as the early detection and subsequently resolution by building services of more complex issues such as SBS. The occupant's discomfort is interpreted and converted to air-conditioning system set points using Fuzzy Logic. Experimental results from a multi-zone air-conditioning test rig have been included in this paper.
Resumo:
An automated cloud band identification procedure is developed that captures the meteorology of such events over southern Africa. This “metbot” is built upon a connected component labelling method that enables blob detection in various atmospheric fields. Outgoing longwave radiation is used to flag candidate cloud band days by thresholding the data and requiring detected blobs to have sufficient latitudinal extent and exhibit positive tilt. The Laplacian operator is used on gridded reanalysis variables to highlight other features of meteorological interest. The ability of this methodology to capture the significant meteorology and rainfall of these synoptic systems is tested in a case study. Usefulness of the metbot in understanding event to event similarities of meteorological features is demonstrated, highlighting features previous studies have noted as key ingredients to cloud band development in the region. Moreover, this allows the presentation of a composite cloud band life cycle for southern Africa events. The potential of metbot to study multiscale interactions is discussed, emphasising its key strength: the ability to retain details of extreme and infrequent events. It automatically builds a database that is ideal for research questions focused on the influence of intraseasonal to interannual variability processes on synoptic events. Application of the method to convergence zone studies and atmospheric river descriptions is suggested. In conclusion, a relation-building metbot can retain details that are often lost with object-based methods but are crucial in case studies. Capturing and summarising these details may be necessary to develop deeper process-level understanding of multiscale interactions.