921 resultados para Build-Up Back To Back LSB, Cold-Formed Steel Structures, Lateral Distortional Buckling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new cold-formed steel beam, known as the LiteSteel Beam (LSB), has the potential to transform the low-rise building industry. The new beam is effectively a channel section with two rectangular hollow flanges and a slender web, and is manufactured using a simultaneous cold-forming and electric resistance welding process. Research into the flexural behaviour of single LSB members showed that the LSBs are susceptible to lateral distortional buckling effects and their moment capacities are significantly reduced for intermediate spans. Build-up LSB sections are expected to improve their flexural capacity and to enhance their applications. They are also likely to mitigate the detrimental effects of lateral distortional buckling observed with single LSB members of intermediate spans. However, the behaviour of build up beams is not well understood. Currently available design rules were found to be inadequate to predict the member moment capacities of back to back LSBs. Therefore a research project based on both experimental and numerical studies was undertaken to investigate the flexural behaviour of back to back LSBs with various longitudinal connection spacings under a uniform moment. New design rules were developed using the moment capacity data obtained using finite element analyses and experimental tests. This paper presents the details of the development of design rules for the back to back LSB sections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of cold-formed steel members as structural columns and beams in residential, industrial and commercial buildings has increased significantly in recent times. This study is focused on the use of cold-formed steel sections as flexural members subject to lateral-torsional buckling. For this purpose a finite element model of a simply supported lipped channel beam under uniform bending was developed, validated using available numerical and experimental results, and used in a detailed parametric study. The moment capacity results were then compared with the predictions from the current ambient temperature design rules in the cold-formed steel structures codes of Australia, New Zealand, North America and Europe. European design rules were found to be conservative while Australian and American design rules were unsafe. This paper presents the results of the numerical study, the comparison with the current design rules and the new proposed design rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Australian manufacturer has recently developed an innovative group of cold-formed steel hollow flange sections, one of them is LiteSteel Beams (LSBs). The LSB sections are produced from thin and high strength steels by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. They have a unique geometry consisting of rectangular hollow flanges and a relatively slender web. The LSB flexural members are subjected to lateral distortional buckling effects and hence their capacities are reduced for intermediate spans. The current design rules for lateral distortional buckling were developed based on the lower bound of numerical and experimental results. The effect of LSB section geometry was not considered although it could influence the lateral distortional buckling performance. Therefore an accurate finite element model of LSB flexural members was developed and validated using experimental and finite strip analysis results. It was then used to investigate the effect of LSB geometry. The extensive moment capacity data thus developed was used to develop improved design rules for LSBs with one of them considering the LSB geometry effects through a modified slenderness parameter. The use of the new design rules gave higher lateral distortional buckling capacities for LSB sections with intermediate slenderness. The new design rule is also able to accurately predict the lateral distortional buckling moment capacities of other hollow flange beams (HFBs).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire safety design of building structures has received greater attention in recent times due to continuing loss of properties and lives during fires. However, fire performance of light gauge cold-formed steel structures is not well understood despite its increased usage in buildings. Cold-formed steel compression members are susceptible to various buckling modes such as local and distortional buckling and their ultimate strength behaviour is governed by these buckling modes. Therefore a research project based on experimental and numerical studies was undertaken to investigate the distortional buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. Lipped channel sections with and without additional lips were selected with three thicknesses of 0.6, 0.8, and 0.95 mm and both low and high strength steels (G250 and G550 steels). More than 150 compression tests were undertaken first at ambient and elevated temperatures. Finite element models of the tested compression members were then developed by including the degradation of mechanical properties with increasing temperatures. Comparison of finite element analysis and experimental results showed that the developed finite element models were capable of simulating the distortional buckling and strength behaviour at ambient and elevated temperatures up to 800 °C. The validated model was used to determine the effects of mechanical properties, geometric imperfections and residual stresses on the distortional buckling behaviour and strength of cold-formed steel columns. This paper presents the details of the numerical study and the results. It demonstrated the importance of using accurate mechanical properties at elevated temperatures in order to obtain reliable strength characteristics of cold-formed steel columns under fire conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel beams are increasingly used as floor joists and bearers in buildings. Their behaviour and moment capacities are influenced by lateral-torsional buckling when they are not laterally restrained adequately. Past research on lateral-torsional buckling has concentrated on hot-rolled steel beams. Hence a numerical study was undertaken to investigate the lateral-torsional buckling behaviour of simply supported cold-formed steel lipped channel beams subjected to uniform bending. For this purpose a finite element model was developed using ABAQUS and its accuracy was verified using available numerical and experimental results. It was then used in a detailed parametric study to simulate the lateral-torsional buckling behaviour and capacity of cold-formed steel beams under varying conditions. The moment capacity results were compared with the predictions from the current design rules in many cold-formed steel codes and suitable recommendations were made. European design rules were found to be conservative while Australian/New Zealand and North American design rules were unconservative. Hence the moment capacity design equations in these codes were modified in this paper based on the available finite element analysis results. This paper presents the details of the parametric study, recommendations to current design rules and the new design rules proposed in this research for lateral-torsional buckling of cold-formed steel lipped channel beams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel beams are increasingly used as floor joists and bearers in buildings and often their behaviour and moment capacities are influenced by lateral-torsional buckling. With increasing usage of cold-formed steel beams their fire safety design has become an important issue. Fire design rules are commonly based on past research on hot-rolled steel beams. Hence a detailed parametric study was undertaken using validated finite element models to investigate the lateral-torsional buckling behaviour of simply supported cold-formed steel lipped channel beams subjected to uniform bending at uniform elevated temperatures. The moment capacity results were compared with the predictions from the available ambient temperature and fire design rules and suitable recommendations were made. European fire design rules were found to be over-conservative while the ambient temperature design rules could not be used based on single buckling curve. Hence a new design method was proposed that includes the important non-linear stress-strain characteristics observed for cold-formed steels at elevated temperatures. Comparison with numerical moment capacities demonstrated the accuracy of the new design method. This paper presents the details of the parametric study, comparisons with current design rules and the new design rules proposed in this research for lateral-torsional buckling of cold-formed steel lipped channel beams at elevated temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper has presented the details of an investigation into the flexural and flexuraltorsional buckling behaviour of cold-formed structural steel columns with pinned and fixed ends. Current design rules for the member capacities of cold-formed steel columns are based on the same non-dimensional strength curve for both fixed and pinned-ended columns. This research has reviewed the accuracy of the current design rules in AS/NZS 4600 and the North American Specification in determining the member capacities of cold-formed steel columns using the results from detailed finite element analyses and an experimental study of lipped channel columns. It was found that the current Australian and American design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural and flexural torsional buckling. However, for fixed ended columns with warping fixity undergoing flexural-torsional buckling, it was found that the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This paper has therefore proposed improved design rules and verified their accuracy using finite element analysis and test results of cold-formed lipped channel columns made of three cross-sections and five different steel grades and thicknesses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light gauge cold-formed steel sections have been developed as more economical building solutions to the alternative heavier hot-rolled sections in the commercial and residential markets. Cold-formed lipped channel beams (LCB), LiteSteel beams (LSB) and triangular hollow flange beams (THFB) are commonly used as flexural members such as floor joists and bearers while rectangular hollow flange beams (RHFB) are used in small scale housing developments through to large building structures. However, their shear capacities are determined based on conservative design rules. For the shear design of cold-formed steel beams, their elastic shear buckling strength and the potential post-buckling strength must be determined accurately. Hence experimental and numerical studies were conducted to investigate the shear behaviour and strength of LCBs, LSBs, THFBs and RHFBs. Improved shear design rules including the direct strength method (DSM) based design equations were developed to determine the ultimate shear capacities of these open and hollow flange steel beams. An improved equation for the higher elastic shear buckling coefficient of cold-formed steel beams was proposed based on finite element analysis results and included in the design equations. A new post-buckling coefficient was also introduced in the design equations to include the available post-buckling strength of cold-formed steel beams. This paper presents the details of this study on cold-formed steel beams subject to shear, and the results. It proposes generalised and improved shear design rules that can be used for any type of cold-formed steel beam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel shapes have been widely employed in steel construction, where they frequently offer a lower cost solution than do traditional laminated shapes. A classic application of cold-formed steel shapes is purlins in the roof panel of industrial buildings, connected to the roof panel by means of screws. The combined effect of these two elements has been the subject of investigations in some countries. Design criteria were included in the AISI Code in 1991 and 1996. This paper presents and discusses the results obtained from bending tests carried out on shapes commonly used in Brazil, i.e., the channel and the simple lipped channel, Tests were carried out on double shapes with 4.5 and 6.0 meter spans, which were subjected to concentrated loads and braced against each other on the supports and at intermediary points in three different load situations. The panel shape was also analyzed experimentally, simulating the action of wind by means of a vacuum box designed specifically for this purpose. The test results were then compared to those obtained through the theoretical analysis, enabling us to extract important information upon which to base proposed design criteria for the new Brazilian code.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load bearing structural elements and non-load bearing structural elements (partitions) due to their advantages such as higher strength to weight ratio over the other structural materials such as hot-rolled steel, timber and concrete. Cold-formed steel members are often made from thin steel sheets and hence they are more susceptible to various buckling modes. Generally short columns are susceptible to local or distortional buckling while long columns to flexural or flexural-torsional buckling. Fire safety design of building structures is an essential requirement as fire events can cause loss of property and lives. Therefore it is essential to understand the fire performance of light gauge cold-formed steel structures under fire conditions. The buckling behaviour of cold-formed steel compression members under fire conditions is not well investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken at the Queensland University of Technology to investigate the buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. As the first phase of this research, a detailed review was undertaken on the mechanical properties of light gauge cold-formed steels at elevated temperatures and the most reliable predictive models for mechanical properties and stress-strain models based on detailed experimental investigations were identified. Their accuracy was verified experimentally by carrying out a series of tensile coupon tests at ambient and elevated temperatures. As the second phase of this research, local buckling behaviour was investigated based on the experimental and numerical investigations at ambient and elevated temperatures. First a series of 91 local buckling tests was carried out at ambient and elevated temperatures on lipped and unlipped channels made of G250-0.95, G550-0.95, G250-1.95 and G450-1.90 cold-formed steels. Suitable finite element models were then developed to simulate the experimental conditions. These models were converted to ideal finite element models to undertake detailed parametric study. Finally all the ultimate load capacity results for local buckling were compared with the available design methods based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Part 1.2 and the direct strength method (DSM), and suitable recommendations were made for the fire design of cold-formed steel compression members subject to local buckling. As the third phase of this research, flexural-torsional buckling behaviour was investigated experimentally and numerically. Two series of 39 flexural-torsional buckling tests were undertaken at ambient and elevated temperatures. The first series consisted 2800 mm long columns of G550-0.95, G250-1.95 and G450-1.90 cold-formed steel lipped channel columns while the second series contained 1800 mm long lipped channel columns of the same steel thickness and strength grades. All the experimental tests were simulated using a suitable finite element model, and the same model was used in a detailed parametric study following validation. Based on the comparison of results from the experimental and parametric studies with the available design methods, suitable design recommendations were made. This thesis presents a detailed description of the experimental and numerical studies undertaken on the mechanical properties and the local and flexural-torsional bucking behaviour of cold-formed steel compression member at ambient and elevated temperatures. It also describes the currently available ambient temperature design methods and their accuracy when used for fire design with appropriately reduced mechanical properties at elevated temperatures. Available fire design methods are also included and their accuracy in predicting the ultimate load capacity at elevated temperatures was investigated. This research has shown that the current ambient temperature design methods are capable of predicting the local and flexural-torsional buckling capacities of cold-formed steel compression members at elevated temperatures with the use of reduced mechanical properties. However, the elevated temperature design method in Eurocode 3 Part 1.2 is overly conservative and hence unsuitable, particularly in the case of flexural-torsional buckling at elevated temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel beams are increasingly used as floor joists and bearers in residential, industrial and commercial buildings. Their structural behaviour and moment capacities are influenced by lateral-torsional buckling and hence a research study was undertaken to investigate the lateral-torsional buckling behaviour of cold-formed steel lipped channel beams at ambient and elevated temperatures. For this purpose a finite element model of a simply supported cold-formed steel lipped channel beam under uniform bending was developed first and validated using available numberical and experimental results. It was then used in a detailed parametric study to simulate the lateral-torsional behaviour of cold-formed steel beams under varying conditions. The moment capacity results were then compared with the predictions from the current ambient temperature design rules in Australia, New Zealand, American and European codes for cold-formed steel structures. Some very interesting results have been obtained. European design rules are found to be conservative while Australian and American design rules are unsafe. This paper presents the results of finite element analyses for ambient temperature conditions, and the comparison with the current design rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is a new hollow flange section with a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. It is subjected to lateral distortional buckling when used as flexural members, which reduces its member moment capacity. An investigation into the flexural behaviour of LSBs using experiments and numerical analyses led to the development of new design rules for LSBs subject to lateral distortional buckling. However, the comparison of moment capacity results with the new design rules showed that they were conservative for some LSB sections while slightly unconservative for others due to the effects of section geometry. It is also unknown whether these design rules are applicable to other hollow flange sections such as hollow flange beams (HFB). This paper presents the details of a study into the lateral distortional buckling behaviour of hollow flange sections such as LSBs, HFBs and their variations. A geometrical parameter defined as the ratio of flange torsional rigidity to the major axis flexural rigidity of the web (GJf/EIxweb) was found to be a critical parameter in evaluating the lateral distortional buckling behaviour and moment capacities of hollow flange sections. New design rules were therefore developed by using a member slenderness parameter modified by K, where K is a function of GJf/EIxweb. The new design rules based on the modified slenderness parameter were found to be accurate in calculating the moment capacities of not only LSBs and HFBs, but also other types of hollow flange sections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.