963 resultados para Buffalo erythrocytes
Resumo:
(CO2)-C-14 production from [1-C-14] glucose, the rate of glycolysis measured by the value of lactate production and the activities of various enzymes were determined in buffalo erythrocytes. Buffalo red cell glycolytic metabolites were estimated and used for the calculation of the mass action ratios of reactions catalyzed by the glycolytic enzymes of Bubalus bubalis. A comparison of the values of the mass action ratios with the equilibrium constants of the various glycolytic reactions indicate that hexokinase, phosphofructokinase, phosphoglycerate kinase and pyruvate kinase reactions are displaced from equilibrium, suggesting a regulatory role for each of these enzymes in buffalo erythrocyte glycolysis. (C) 1997 Elsevier B.V.
Resumo:
Buffalo erythrocytes contain one isozyme of hexokinase that apparently lacks microheterogeneity as shown by chromatographic properties. A single protein band was detected by means of Western blotting using an antibody raised in rabbits against homogeneous rat brain hexokinase I. The native protein has a molecular weight of 200,000 +/- 2880 by gel filtration. Partial purification of erythrocyte hexokinase by a combination of several procedures, including affinity chromatography, which was previously applied successfully to the purifica tion of other mammalian type I hexokinases, produced a partially purified enzyme that showed several contami nants after SDS-polyacrylamide gel electrophoresis. The affinity of buffalo erythrocyte hexokinase for glucose (K-m = 0.012 +/- 0.001 mM) is lower than most other mammal hexokinases type I. It phosphorylates other sugars, with considerably higher K-m values. This isozyme is able to use MgATP but does not use MgGTP, MgCTP or MgUTP. We used inhibition patterns, obtained with products to elucidate enzyme sequential mechanisms. Our results are clearly in agreement with a random sequential mechanism and in disagreement with an ordered sequential mechanism with either glucose or ATP as the obligatory first substrates. The ADP inhibition was of mixed type with both ATP and glucose as substrates. (C) 1997 Elsevier B.V.
Resumo:
The objectives of this investigation were to understand transplacental transport of iron by secreted uteroferrin (UF) and haemophagous areas of water buffalo placenta and clarify the role(s) of blood extravasation at the placental-maternal interface. Placentomes and interplacentomal region of 51 placentae at various stages of gestation were fixed, processed for light and transmission electron microscopy, histochemistry and immunohistochemistry. Haemophagous areas were present in placentomes collected between 4 and 10 months of pregnancy. Perl`s reaction for ferric iron was negative in placentomes, but positive in endometrial glands. Positive staining for UF indicated areas in which it was being taken up by phagocytosis and/or fluid phase pinocytosis in areolae of the interplacentomal mesenchyme, with little staining in endometrial stroma. Imunohistochemistry detected UF in trophectoderm of haemophagous regions of placentomes and in other parts of the foetal villous tree, but the strongest immunostaining was in the epithelial cells and lumen of uterine glands. Ultrastructural analyses indicated that erythrophagocytosis was occurring and that erythrocytes were present inside cells of the chorion that also contained endocytic vesicles and caveolae. Results of this study indicate that both the haemophagous areas of placentomes and the areolae at the interface between chorion and endometrial glands are important sites for iron transfer from mother to foetal-placental tissues in buffalo throughout pregnancy.
Resumo:
The objectives of this investigation were to understand transplacental transport of iron by secreted uteroferrin (UF) and haemophagous areas of water buffalo placenta and clarify the role(s) of blood extravasation at the placental-maternal interface. Placentomes and interplacentomal region of 51 placentae at various stages of gestation were fixed, processed for light and transmission electron microscopy, histochemistry and immunohistochemistry. Haemophagous areas were present in placentomes collected between 4 and 10 months of pregnancy. Perl's reaction for ferric iron was negative in placentomes, but positive in endometrial glands. Positive staining for UF indicated areas in which it was being taken up by phagocytosis and/or fluid phase pinocytosis in areolae of the interplacentomal mesenchyme, with little staining in endometrial stroma. Imunohistochemistry detected UF in trophectoderm of haemophagous regions of placentomes and in other parts of the foetal villous tree, but the strongest immunostaining was in the epithelial cells and lumen of uterine glands. Ultrastructural analyses indicated that erythrophagocytosis was occurring and that erythrocytes were present inside cells of the chorion that also contained endocytic vesicles and caveolae. Results of this study indicate that both the haemophagous areas of placentomes and the areolae at the interface between chorion and endometrial glands are important sites for iron transfer from mother to foetal-placental tissues in buffalo throughout pregnancy.
Resumo:
β-Carotene, zeaxanthin, lutein, β-cryptoxanthin, and lycopene are liposoluble pigments widely distributed in vegetables and fruits and, after ingestion, these compounds are usually detected in human blood plasma. In this study, we evaluated their potential to inhibit hemolysis of human erythrocytes, as mediated by the toxicity of peroxyl radicals (ROO•). Thus, 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AAPH) was used as ROO• generator and the hemolysis assay was carried out in experimental conditions optimized by response surface methodology, and successfully adapted to microplate assay. The optimized conditions were verified at 30 × 10(6) cells/mL, 17 mM of AAPH for 3 h, at which 48 ± 5% of hemolysis was achieved in freshly isolated erythrocytes. Among the tested carotenoids, lycopene (IC(50) = 0.24 ± 0.05 μM) was the most efficient to prevent the hemolysis, followed by β-carotene (0.32 ± 0.02 μM), lutein (0.38 ± 0.02 μM), and zeaxanthin (0.43 ± 0.02 μM). These carotenoids were at least 5 times more effective than quercetin, trolox, and ascorbic acid (positive controls). β-Cryptoxanthin did not present any erythroprotective effect, but rather induced a hemolytic effect at the highest tested concentration (3 μM). These results suggest that selected carotenoids may have potential to act as important erythroprotective agents by preventing ROO•-induced toxicity in human erythrocytes.
Resumo:
Membrane microdomains enriched in cholesterol, sphingolipids (rafts), and specific proteins are involved in important physiological functions. However their structure, size and stability are still controversial. Given that detergent-resistant membranes (DRMs) are in the liquid-ordered state and are rich in raft-like components, they might correspond to rafts at least to some extent. Here we monitor the lateral order of biological membranes by characterizing DRMs from erythrocytes obtained with Brij-98, Brij-58, and TX-100 at 4 °C and 37 °C. All DRMs were enriched in cholesterol and contained the raft markers flotillin-2 and stomatin. However, sphingomyelin (SM) was only found to be enriched in TX-100-DRMs - a detergent that preferentially solubilizes the membrane inner leaflet - while Band 3 was present solely in Brij-DRMs. Electron paramagnetic resonance spectra showed that the acyl chain packing of Brij-DRMs was lower than TX-100-DRMs, providing evidence of their diverse lipid composition. Fatty acid analysis revealed that the SM fraction of the DRMs was enriched in lignoceric acid, which should specifically contribute to the resistance of SM to detergents. These results indicate that lipids from the outer leaflet, particularly SM, are essential for the formation of the liquid-ordered phase of DRMs. At last, the differential solubilization process induced by Brij-98 and TX-100 was monitored using giant unilamellar vesicles. This study suggests that Brij and TX-100-DRMs reflect different degrees of lateral order of the membrane microdomains. Additionally, Brij DRMs are composed by both inner and outer leaflet components, making them more physiologically relevant than TX-100-DRMs to the studies of membrane rafts.
Resumo:
Effective incorporation of a probiotic into foods requires the culture to remain viable all along processing and storage, without adverse alterations to sensory characteristics. The objective of this work was developing Minas-type fresh cheese with probiotic properties from buffalo milk. Four batches of Minas-type fresh cheese were prepared using buffalo milk: batch T1 in which neither culture nor lactic acid added; batch T3 in which only lactic acid added; batches T2 and T4 , both added of Lactobacillus acidophilus LAC 4, but T4 was also acidified. Resulting cheeses were evaluated for probiotic culture stability, texture profile, sensory acceptance, and changes in pH. The T4 probiotic cheese presented hardness, gumminess, and chewiness significantly lower than the other treatments. However, values for springiness and cohesiveness did not differ between all cheeses, and no sensory differences (p > 0.05) were found between treatments for texture, taste, and overall acceptance. The addition of probiotic to the acidified cheese (T4) yielded best aroma. The populations of L. acidophilus were greater than 10(6) CFU g-1 after 28 days of storage all products. Minas-type fresh cheese from buffalo milk is a suitable food for the delivery of L. acidophilus, since the culture remained viable during the shelf life of the products and did not negative affect analysed parameters.
Resumo:
The effects were assessed of two energy sources in concentrate (ground grain corn vs. citrus pulp) and two nitrogen sources (soybean meal vs. urea) on rumen metabolism in four buffaloes and four zebu cattle (Nellore) with rumen cannula and fed in a 4 × 4 Latin square design with feeds containing 60% sugar cane. Energy supplements had no effect on the rumen ammonia concentration in cattle, but ground grain corn promoted higher ammonia level than citrus pulp in buffalo. Urea produced higher ammonia level than soybean meal in both animal species. On average, the buffaloes maintained a lower rumen ammonia concentration (11.7 mg/dL) than the cattle (14.5 mg/dL). Buffaloes had lower production of acetic acid than cattle (58.7 vs. 61.6 mol/100 mol) and higher of propionic acid (27.4 vs. 23.6 mol/100 mol). There was no difference in the butyric acid production between the buffaloes (13.6 mol/100 mol) and cattle (14.8 mol/100 mol) and neither in the total volatile fatty acids concentration (82.5 vs. 83.6 mM, respectively). The energy or nitrogen sources had no effect on rumen protozoa count in either animal species. The zebu cattle had higher rumen protozoa population (8.8 × 10(5)/mL) than the buffaloes (6.1 × 10(5)/mL). The rumen protozoa population differed between the animal species, except for Dasytricha and Charonina. The buffaloes had a lower Entodinium population than the cattle (61.0 vs 84.9%, respectively) and a greater percentage of species belonging to the Diplodiniinae subfamily than the cattle (28.6 vs. 1.4%, respectively). In cattle, ground corn is a better energy source than citrus pulp for use by Entodinium and Diplodiniinae. In the buffaloes, the Entodinium are favored by urea and Diplodiniinae species by soybean meal.
Resumo:
Ten cattle and 10 buffalo were divided into 2 groups (control [n = 8] and experimental [n = 12]) that received daily administration of copper. Three hepatic biopsies and blood samples were performed on days 0, 45, and 105. The concentration of hepatic copper was determined by spectrophotometric atomic absorption, and the activities of aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) were analyzed. Regression analyses were done to verify the possible existing relationship between enzymatic activity and concentration of hepatic copper. Sensitivity, specificity, accuracy, and positive and negative predictive values were determined. The serum activities of AST and GGT had coefficients of determination that were excellent predictive indicators of hepatic copper accumulation in cattle, while only GGT serum activity was predictive of hepatic copper accumulation in buffalo. Elevated serum GGT activity may be indicative of increased concentrations of hepatic copper even in cattle and buffalo that appear to be clinically healthy. Thus, prophylactic measures can be implemented to prevent the onset of a hemolytic crisis that is characteristic of copper intoxication.
Resumo:
Background. Plasmodium falciparum and Plasmodium vivax are responsible for most of the global burden of malaria. Although the accentuated pathogenicity of P. falciparum occurs because of sequestration of the mature erythrocytic forms in the microvasculature, this phenomenon has not yet been noted in P. vivax. The increasing number of severe manifestations of P. vivax infections, similar to those observed for severe falciparum malaria, suggests that key pathogenic mechanisms (eg, cytoadherence) might be shared by the 2 parasites. Methods. Mature P. vivax-infected erythrocytes (Pv-iEs) were isolated from blood samples collected from 34 infected patients. Pv-iEs enriched on Percoll gradients were used in cytoadhesion assays with human lung endothelial cells, Saimiri brain endothelial cells, and placental cryosections. Results. Pv-iEs were able to cytoadhere under static and flow conditions to cells expressing endothelial receptors known to mediate the cytoadhesion of P. falciparum. Although Pv-iE cytoadhesion levels were 10-fold lower than those observed for P. falciparum-infected erythrocytes, the strength of the interaction was similar. Cytoadhesion of Pv-iEs was in part mediated by VIR proteins, encoded by P. vivax variant genes (vir), given that specific antisera inhibited the Pv-iE-endothelial cell interaction. Conclusions. These observations prompt a modification of the current paradigms of the pathogenesis of malaria and clear the way to investigate the pathophysiology of P. vivax infections.
Resumo:
Acai, the fruit of a palm native to the Amazonian basin, is widely distributed in northern South America, where it has considerable economic importance. Whereas individual polyphenolics compounds in Acai have been extensively evaluated, studies of the intact fruit and its biological properties are lacking. Therefore, the present study was undertaken to investigate the in vivo genotoxicity of Acai and its possible antigenotoxicity on doxorubicin (DXR)-induced DNA damage. The Acai pulp doses selected were 3.33, 10.0 and 16.67 g/kg b.w. administered by gavage alone or prior to DXR (16 mg/kg b.w.) administered by intraperitoneal injection. Swiss albino mice were distributed in eight groups for acute treatment with acai pulp (24 h) and eight groups for subacute treatment (daily for 14 consecutive days) before euthanasia. The negative control groups were treated in a similar way. The results of chemical analysis suggested the presence of carotenoids, anthocyanins, phenolic. and flavonoids in Acai pulp. The endpoints analyzed were micronucleus induction in bone marrow and peripheral blood cells polychromatic erythrocytes, and DNA damage in peripheral blood, liver and kidney cells assessed using the alkaline (pH > 13) comet assay. There were no statistically significant differences (p > 0.05) between the negative control and the groups treated with the three doses of Acai pulp alone in all endpoints analyzed, demonstrating the absence of genotoxic effects. The protective effects of Acai pulp were observed in both acute and subacute treatments, when administered prior to DXR. In general, subacute treatment provided greater efficiency in protecting against DXR-induced DNA damage in liver and kidney cells. These protective effects can be explained as the result of the phytochemicals present in Acai pulp. These results will be applied to the developmental of food with functional characteristics, as well as to explore the characteristics of Acai as a health promoter. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective To determine the efficacy of zeta-cypermethrin in controlling buffalo fly (Haematobia irritans exigua). Design Five field trials in northern and central Queensland. Procedure Zeta-cypermethrin pour-on at 2.5 mg/kg, spray at 62.5 ppm, deltamethrin pour-on and pour-on vehicle were applied to groups of 20 cattle. Buffalo fly counts were conducted three times before treatment and 3, 7, 14, 21, 28 and 35 days after treatment. Results In central Queensland where synthetic pyrethroid resistance in buffalo fly populations was rare, 2.5 mg/kg of zeta-cypermethrin pour-on gave good control of buffalo fly for 4 weeks and was better than a deltamethrin product. A zeta-cypermethrin spray used at 62.5 ppm gave 14 days control. In far-north Queensland where resistance to synthetic pyrethroids and heavy rain was common, the maximum period of efficacy of zeta-cypermethrin pour-on was reduced to 2 weeks. Conclusion In areas where there is low resistance to synthetic pyrethroids among buffalo flies, zeta-cypermethrin pour-on can be expected to give good control for 4 weeks.
Resumo:
Nuclear-mitochondrial incompatibilities may be responsible for the development failure reported in embryos and fetuses produced by interspecies somatic cell nuclear transfer (iSCNT). Herein we performed xenooplasmic transfer (XOT) by introducing 10 to 15% of buffalo ooplasm into bovine zygotes to assess its effect on the persistence of buffalo mitochondrial DNA (mtDNA). Blastocyst rates were not compromised by XOT in comparison to both in vitro fertilized embryos and embryos produced by transfer of bovine ooplasm into bovine zygotes. Moreover, offspring were born after transfer of XOT embryos to recipient cows. Buffalo mtDNA introduced in zygotes was still present at the blastocyst stage (8.3 vs. 9.3%, p = 0.11), indicating unaltered heteroplasmy during early development. Nonetheless, no vestige of buffalo mtDNA was found in offspring, indicating a drift to homoplasmy during later stages of development. In conclusion, we show that the buffalo mtDNA introduced by XOT into a bovine zygote do not compromise embryo development. On the other hand, buffalo mtDNA was not inherited by offspring indicating a possible failure in the process of interspecies mtDNA replication.
Resumo:
The aim of this study was to determine the congenital infection by Neospora caninum in the water buffalo (Bubalus bubalis), a natural intermediate host. Nine pregnant water buffalos, raised under free-grazing condition, were slaughtered, and their fetuses were collected. Samples of brain and thoracic fluid were obtained from those fetuses, with gestational ages ranging from 2 to 5 months. The DNA of N. caninum was detected and identified in the brain of one of those fetuses, using two PCR assays, one directed to the Nc5 gene and the other, to the common toxoplasmatiid ITS1 sequence. The DNA fragments produced on PCR were sequenced, and N. caninum was confirmed in the samples. No antibodies to N. caninum were detected on any sample of thoracic fluid by immunofluorescent antibody test (IFAT < 25). This is the first confirmation of congenital transmission of N. caninum in water buffalos.