999 resultados para Brussels sprouts
Resumo:
Mode of access: Internet.
Resumo:
The offspring of parasitoids, Aphidius colemani Viereck, reared on Brussels sprouts and emerging from Myzus persicae Sulzer on a fully defined artificial diet, show no preferences in a four-way olfactometer, either for the odour of the diet, the odour of Brussels sprouts, or the odour of two other crucifers (cabbage and Chinese cabbage). A similar lack of odour preferences is shown when the host aphids are exposed for parasitization (for 48 h) on cabbage, Chinese cabbage or wheat. However, if parasitization occurs on Brussels sprouts, a weak but statistically highly significant response to Brussels sprout odour is observed. Although as many as 30-35% of the parasitoids show no response to any odour, another 35% respond positively to the odour of Brussels sprout compared with responses to the odours of cabbage, Chinese cabbage or wheat of only approximately 10%. An analagous result is obtained when the parent parasitoids are reared on cabbage. In this case, significant positive responses of their offspring to cabbage odour occur only if the 48-h parasitization has occurred also on cabbage. However, with parasitoids from Brussels sprouts parasitizing the aphids for 48 h also on Brussels sprouts, the offspring subsequently emerging from pupae excised from the mummies show no preference for Brussels sprout odour. Thus, although the Brussels sprout cue had been experienced early in the development of the parasitoids, they only become conditioned to it when emerging from the mummy. Both male and female parasitoids respond very similarly in all experiments. It is proposed that the chemical cue (probably glucosinolates in these experiments) is most likely in the silk surrounding the parasitoid pupa, and that the mother may leave the chemical in or around the egg at oviposition, inducing chemical defences in her offspring to the secondary plant compounds that the offspring are likely to encounter.
Resumo:
Plants can respond to damage by pests with both induced direct defences and indirect defences by the attraction of their natural enemies. Foliar application of several plant-derived chemicals, such as salicylic acid and oxalic acid, can induce these defence mechanisms. The effect of acetylsalicylic acid and oxalic acid on the aphid Myzus persicae Sulzer (Homoptera: Aphididae) and its parasitoid Aphidius colemani Viereck (Hymenoptera: Aphidiidae) was investigated. Experiments were carried out with direct application of acetylsalicylic and oxalic acids on these insects, as well as choice and no-choice tests using foliar application of both chemicals on Brussels sprouts plants, Brassica oleracea var. gemmifera L. (Brassicaceae). Parasitoids were given a choice between treated and untreated plants for oviposition, and the effects of the chemicals on aphid and parasitoid development were determined. Although direct application of both chemicals increased aphid mortality, their foliar application did not induce resistance against aphids. The foliar application of such compounds, even in low concentration as shown in the choice tests, has the potential to induce indirect plant defences against aphids by encouraging aphid parasitisation. Although the direct application of both chemicals reduced parasitoid emergence from their hosts, the foliar application of acetylsalicylic acid and low concentrations of oxalic acid did not have a negative effect on parasitoid emergence ability. However, 10 mm oxalic acid reduced the number of emerged parasitoids in no-choice experiments. This study shows that foliar application of acetylsalicylic and oxalic acids has the potential to encourage aphid parasitisation, but care is needed as high concentrations of oxalic acid can have a negative effect on these beneficial organisms.
Resumo:
Glucosinolates (GLSs) are found in Brassica vegetables. Examples of these sources include cabbage, Brussels sprouts, broccoli, cauliflower and various root vegetables (e.g. radish and turnip). A number of epidemiological studies have identified an inverse association between consumption of these vegetables and the risk of colon and rectal cancer. Animal studies have shown changes in enzyme activities and DNA damage resulting from consumption of Brassica vegetables or isothiocyanates, the breakdown products (BDP) of GLSs in the body. Mechanistic studies have begun to identify the ways in which the compounds may exert their protective action but the relevance of these studies to protective effects in the human alimentary tract is as yet unproven. In vitro studies with a number of specific isothiocyanates have suggested mechanisms that might be the basis of their chemoprotective effects. The concentration and composition of the GLSs in different plants, but also within a plant (e.g. in the seeds, roots or leaves), can vary greatly and also changes during plant development. Furthermore, the effects of various factors in the supply chain of Brassica vegetables including breeding, cultivation, storage and processing on intake and bioavailability of GLSs are extensively discussed in this paper.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Evidence indicates that cruciferous vegetables are protective against a range of cancers with glucosinolates and their breakdown products considered the biologically active constituents. To date, epidemiological studies have not investigated the intakes of these constituents due to a lack of food composition databases. The aim of the present study was to develop a database for the glucosinolate content of cruciferous vegetables that can be used to quantify dietary exposure for use in epidemiological studies of diet-disease relationships. Published food composition data sources for the glucosinolate content of cruciferous vegetables were identified and assessed for data quality using established criteria. Adequate data for the total glucosinolate content were available from eighteen published studies providing 140 estimates for forty-two items. The highest glucosinolate values were for cress (389 mg/100 g) while the lowest values were for Pe-tsai chinese cabbage (20 mg/100 g). There is considerable variation in the values reported for the same vegetable by different studies, with a median difference between the minimum and maximum values of 5.8-fold. Limited analysis of cooked cruciferous vegetables has been conducted; however, the available data show that average losses during cooking are approximately 36 %. This is the first attempt to collate the available literature on the glucosinolate content of cruciferous vegetables. These data will allow quantification of intakes of the glucosinolates, which can be used in epidemiological studies to investigate the role of cruciferous vegetables in cancer aetiology and prevention.
Resumo:
Leaf area growth and nitrogen concentration per unit leaf area, N-a (g m(-2) N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper reports on the effect of N limitation on leaf area production and photosynthetic capacity in maize, a C4 cereal. Maize was grown in two experiments in pots in glasshouses with three (0.84-6.0 g N pot(-1)) and five rates (0.5-6.0 g pot(-1)) of N. Leaf tip and ligule appearance were monitored and final individual leaf area was determined. Changes with leaf age in leaf area, leaf N content and light-saturated photosynthetic capacity, P a,, were measured on two leaves per plant in each experiment. The final area of the largest leaf and total plant leaf area differed by 16 and 29% from the lowest to highest N supply, but leaf appearance rate and the duration of leaf expansion were unaffected. The N concentration of expanding leaves (N-a or %N in dry matter) differed by at least a factor 2 from the lowest to highest N supply. A hyperbolic function described the relation between P-max and N-a. The results confirm the 'maize strategy': leaf N content, photosynthetic capacity, and ultimately radiation use efficiency is more sensitive to nitrogen limitation than are leaf area expansion and light interception. The generality of the findings is discussed and it is suggested that at canopy level species showing the 'potato strategy' can be recognized from little effect of nitrogen supply on radiation use efficiency, while the reverse is true for species showing the 'maize strategy' for adaptation to N limitation. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Selenium is recognised as an essential micronutrient for humans and animals. One of the main sources of selenocompounds in the human diet is vegetables. Therefore, this study deals with the Se species present in different edible sprouts grown in Se-enriched media. We grew alfalfa, lentil and soy in a hydroponic system amended with soluble salts, containing the same proportion of Se, in the form of Se(VI) and Se(IV). Total Se in the sprouts was determined by acidic digestion in a microwave system and by ICP/MS. Se speciation was carried out by enzymatic extraction (Protease XIV) and measured by LC-ICP/MS. The study shows that the Se content of plants depends on the content in the growth culture, and that part of the inorganic Se was biotransformed mainly into SeMet. These results contribute to our understanding of the uptake of inorganic Se and its biotransformation by edible plants.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal