43 resultados para Bromelia balansae
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background and Aims Several animals that live on bromeliads can contribute to plant nutrition through nitrogen provisioning (digestive mutualism). The bromeliad-living spider Psecas chapoda (Salticidae) inhabits and breeds on Bromelia balansae in regions of South America, but in specific regions can also appear on Ananas comosus (pineapple) plantations and Aechmea distichantha. Methods Using isotopic and physiological methods in greenhouse experiments, the role of labelled ((15)N) spider faeces and Drosophila melanogaster flies in the nutrition and growth of each host plant was evaluated, as well as seasonal variation in the importance of this digestive mutualism. Key Results Spiders contributed 0.6 +/- 0.2% (mean +/- s.e.; dry season) to 2.7 +/- 1% (wet season) to the total nitrogen in B. balansae, 2.4 +/- 0.4% (dry) to 4.1 +/- 0.3% (wet) in An. comosus and 3.8 +/- 0.4% (dry) to 5 +/- 1% (wet) in Ae. distichantha. In contrast, flies did not contribute to the nutrition of these bromeliads. Chlorophylls and carotenoid concentrations did not differ among treatments. Plants that received faeces had higher soluble protein concentrations and leaf growth (RGR) only during the wet season. Conclusions These results indicate that the mutualism between spiders and bromeliads is seasonally restricted, generating a conditional outcome. There was interspecific variation in nutrient uptake, probably related to each species` performance and photosynthetic pathways. Whereas B. balansae seems to use nitrogen for growth, Ae. distichantha apparently stores nitrogen for stressful nutritional conditions. Bromeliads absorbed more nitrogen coming from spider faeces than from flies, reinforcing the beneficial role played by predators in these digestive mutualisms.
Resumo:
O comportamento reprodutivo e a ocorrência sazonal de Psecas viridipurpureus foram estudados na Estação Ecológica do Noroeste Paulista, uma pequena área de conservação na região noroeste do Estado de São Paulo, Brasil (49º22'50W e 20º48'36S). P. viridipurpureus ocorreu em gravatás, uma bromeliácea (Bromelia balansae, Bromeliaceae) que não acumula água de chuva. Durante a exibição de corte, o casal ocupou a região mediana das folhas de gravatás, com o macho sempre localizado em uma posição superior à da fêmea. Os machos de P. viridipurpureus apresentaram um comportamento de corte complexo, que incluiu cinco padrões motores. O comportamento de corte e a cópula ocorreram preponderantemente durante a estação chuvosa e o recrutamento de jovens entre dezembro e julho. O abrigo de P. viridipurpureus difere do padrão de Salticidae, pois as ootecas são recobertas por uma cobertura de seda plana e não são incluídas em casulos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Psecas chapoda, a neotropical jumping spider strictly associated with the terrestrial bromeliad Bromelia balansae in cerrados and semi-deciduous forests in South America, effectively contributes to plant nutrition and growth. In this study, our goal was to investigate if spider density caused spatial variations in the strength of this spider-plant mutualism. We found a positive significant relationship between spider density and delta N-15 values for bromeliad leaves in different forest fragments. Open grassland Bromeliads were associated with spiders and had higher delta N-15 values compared to forest bromeliads. Although forest bromeliads had no association with spiders their total N concentrations were higher. These results suggest that bromeliad nutrition is likely more litter-based in forests and more spider-based in open grasslands. This study is one of the few to show nutrient provisioning and conditionality in a spider-plant system. (c) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Although bromeliads are believed to obtain nutrients from debris deposited by animals in their rosettes, there is little evidence to support this assumption. Using stable isotope methods, we found that the Neotropical jumping spider Psecas chapoda (Salticidae), which lives strictly associated with the terrestrial bromeliad Bromelia balansae, contributed 18% of the total nitrogen of its host plant in a greenhouse experiment. In a one-year field experiment, plants with spiders produced leaves 15% longer than plants from which the spiders were excluded. This is the first study to show nutrient provisioning in a spider-plant system. Because several animal species live strictly associated with bromeliad rosettes, this type of facultative mutualism involving the Bromeliaceac may be more common than previously thought.
Resumo:
Although spiders are a very diverse group on vegetation, their associations with plants are poorly known. Some salticid species specifically use Bromeliaceae as host plants in some regions of South America. In this study, I report the geographic range of these spider-bromeliad associations, and whether the spiders inhabit particular bromeliad species and vegetation types, as well as open areas or interior of forests. Nine salticid species were found to be associated with up to 23 bromeliad species in cerrados (savanna-like vegetation), semideciduous and seasonal forests, coastal sand dune vegetation, restingas, inselbergs, highland forests, chacos, and rain forests at 47 localities in Brazil, Paraguay, Bolivia, and Argentina. Some species were typically specialists, inhabiting almost exclusively one bromeliad species over a large geographic range (e.g., Psecas chapoda on Bromelia balansae), whereas others were generalists, occurring on up to 7-8 bromeliad species (e.g., Psecas sp., Eustiromastix nativo, and Coryphasia sp. 1). The regional availability of bromeliad species among habitats may explain this pattern of host plant use. More jumping spiders were found on bromeliads in open areas than on bromeliads in the interior of forests. These results show that several jumping spider species may be strictly associated with the Bromeliaceae in the Neotropics. This is one of the few studies to show host-specific associations for spiders on a particular plant type over a wide geographic range.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Concern for the environment and the exploitation of natural resources has motivated the development of research in lignocellulosic materials, mainly from plant fibers. The major attraction of these materials include the fact that the fibers are biodegradable, they are a renewable natural resource, low cost and they usually produce less wear on equipment manufacturing when compared with synthetic fibers. Its applications are focused on the areas of technology, including automotive, aerospace, marine, civil, among others, due to the advantageous use in economic and ecological terms. Therefore, this study aims to characterize and analyze the properties of plant fiber macambira (bromelia laciniosa), which were obtained in the municipality of Ielmo Marino, in the state of Rio Grande do Norte, located in the region of the Wasteland Potiguar. The characterization of the fiber is given by SEM analysis, tensile test, TG, FTIR, chemical analysis, in addition to obtaining his title and density. The results showed that the extraction of the fibers, only 0.5% of the material is converted into fibers. The results for title and density were satisfactory when compared with other fibers of the same nature. Its structure is composed of microfibrils and its surface is roughened. The cross section has a non-uniform geometry, therefore, it is understood that its diameter is variable along the entire fiber. Values for tensile strength were lower than those of sisal fibers and curauá. The degradation temperature remained equivalent to the degradation temperatures of other vegetable fibers. In FTIR analysis showed that the heat treatment may be an alternative to making the fiber hydrophobic, since, at high temperature can remove the hemicellulose layer, responsible for moisture absorption. Its chemical constitution is endowed with elements of polar nature, so their moisture is around 8.5% which is equivalent to the percentage of moisture content of hydrophilic fibers. It can be concluded that the fiber macambira stands as an alternative materials from renewable sources and depending on the actual application and purpose, it may achieve satisfactory results
Resumo:
The present work reports the characterization of Fastuosain, a novel cysteine protease of 25kDa, purified from the unripe fruits of Bromelia fastuosa, a wild South American Bromeliaceae. Proteolytic activity, measured using casein and synthetic substrates, was dependent on the presence of thiol reagents, having maximum activity at pH 7.0. The present work reports cDNA cloning of Fastuosain; cDNA was amplified by PCR using specific primers. The product was 1096pb long. Mature fastuosain has 217 residues, and with the proregion has a total length of 324 residues. Its primary sequence showed high homology with ananain(74%), stem bromelain (66%) and papain (44%).
Resumo:
In the present work, the antitumor effect of fastuosain, a cysteine proteinase from Bromelia fastuosa, was investigated. In the intravenous model of lung colonization in C57Bl/6 mice, fastuosain and bromelain injected intraperitoneally were protective, and very few nodules of B16F10-Nex2 melanoma cells were detected. Tumor cells treated with fastuosain showed reduced expression of CD44 and decreased invasion through Matrigel, lost their cytoplasmic extensions and substrate adherence, and became round and detached, forming strongly bound cell clusters in suspension. Peritoneal cells recruited and activated by fastuosain treatment ( mainly monocytic cells and lymphocytes) migrated to the lung, where pulmonary melanoma metastases grew. Adoptive transference of peritoneal cells recruited by fastuosain had no protective effect against lung metastases in recipient mice. Treatment of green fluorescent protein - chimeric animals with fastuosain did not change the number of cells that migrated to the lung, compared to PBS-injected control mice, but the number of positive major histocompatibility complex class II cells increased with fastuosain treatment. Murine antibodies against fastuosain, bromelain, and cathepsins B and L cross-reacted in ELISA and recognized surface and cytoplasmic components expressed on B16F10-Nex2 cells. Anti-fastuosain antibodies were cytotoxic/lytic to B16F10-Nex2 cells. Antitumor effects of fastuosain involve mainly the direct effect of the enzyme and elicitation of protective antibodies.