939 resultados para Brine discharge
Resumo:
Programa de doctorado en oceanografía
Resumo:
In many regions, seawater desalination is a growing industry that has its impact on benthic communities. This study analyses the effect on benthic communities of a mitigation measure applied to a brine discharge, using polychaete assemblages as indicator. An eight-year study was conducted at San Pedro del Pinatar (SE Spain) establishing a grid of 12 sites at a depth range of 29–38 m during autumn. Brine discharge started in 2006 and produced a significant decrease in abundance, richness and diversity of polychaete families at the location closest to the discharge, where salinity reached 49. In 2010, a diffuser was deployed at the end of the pipeline in order to increase the mixing, to reduce the impact on benthic communities. After implementation of this mitigation measure, the salinity measured close to discharge was less than 38.5 and a significant recovery in polychaete richness and diversity was detected, to levels similar to those before the discharge. A less evident recovery in abundance was also observed, probably due to different recovery rates of polychaete families. Some families like Paraonidae and Magelonidae were more tolerant to this impact. Others like Syllidae and Capitellidae recovered quickly, although still affected by the discharge, while some families such as Sabellidae and Cirratulidae appeared to recover more slowly.
Resumo:
Salinity gradient power is proposed as a source of renewable energy when two solutions of different salinity are mixed. In particular, Pressure Retarded Osmosis (PRO) coupled with a Reverse Osmosis process (RO) has been previously suggested for power generation, using RO brine as the draw solution. However, integration of PRO with RO may have further value for increasing the extent of water recovery in a desalination process. Consequently, this study was designed to model the impact of various system parameters to better understand how to design and operate practical PRO-RO units. The impact of feed salinity and recovery rate for the RO process on the concentration of draw solution, feed pressure, and membrane area of the PRO process was evaluated. The PRO system was designed to operate at maximum power density of . Model results showed that the PRO power density generated intensified with increasing seawater salinity and RO recovery rate. For an RO process operating at 52% recovery rate and 35 g/L feed salinity, a maximum power density of 24 W/m2 was achieved using 4.5 M NaCl draw solution. When seawater salinity increased to 45 g/L and the RO recovery rate was 46%, the PRO power density increased to 28 W/m2 using 5 M NaCl draw solution. The PRO system was able to increase the recovery rate of the RO by up to 18% depending on seawater salinity and RO recovery rate. This result suggested a potential advantage of coupling PRO process with RO system to increase the recovery rate of the desalination process and reduce brine discharge.
Resumo:
Como consecuencia del proceso de desalación, se produce el vertido al mar de un agua de rechazo hipersalino o salmuera. La salinidad de este vertido es variable, dependiendo del origen de la captación y del proceso de tratamiento. Muchos de los hábitats y biocenosis de los ecosistemas marinos se encuentran adaptados a ambientes de salinidad casi constante y son muy susceptibles a los incrementos de salinidad originados por estos vertidos. Junto con el vertido de salmuera otro de los principales inconvenientes que plantean las plantas desaladoras es el alto consumo energético, con todas las desventajas que esto supone: alto coste del agua desalada para los consumidores, contaminación del medio... El desarrollo de los métodos de vertido, herramientas de gestión de la salmuera, estudios del comportamiento de la pluma salina… ha buscado la mitigación de estos efectos sobre los ecosistemas marinos. El desarrollo en membranas de ósmosis inversa, diseño de bombas y sistemas de recuperación de energía ha permitido también la reducción del consumo energético en las plantas de desalación. Sin embargo, estos campos parecen haber encontrado un techo tecnológico difícil de rebasar en los últimos tiempos. La energía osmótica se plantea como uno de los caminos a investigar aplicado al campo de la reducción del consumo energético en desalación de agua de mar, a través del aprovechamiento energético de la salmuera. Con esta tesis se pretende cumplir principalmente con los siguientes objetivos: reducción del consumo energético en desalación, mitigar el impacto del vertido sobre el medio y ser una nueva herramienta en la gestión de la salmuera. En el presente documento se plantea el desarrollo de un nuevo proceso que utiliza el fenómeno de la ósmosis directa a través de membranas semipermeables, y busca la sinergia desalación depuración, integrando ambos, en un único proceso de tratamiento dentro del ciclo integral del agua. Para verificar los valores de producción, calidad y rendimiento del proceso, se proyecta y construye una planta piloto ubicada en la Planta Desaladora de Alicante II, escalada de tal manera que permite la realización de los ensayos con equipos comerciales de tamaño mínimo. El objetivo es que el resultado final sea extrapolable a tamaños superiores sin que el escalado afecte a la certeza y fiabilidad de las conclusiones obtenidas. La planta se proyecta de forma que el vertido de una desaladora de ósmosis inversa junto con el vertido de un terciario convencional, se pasan por una ósmosis directa y a continuación por una ósmosis inversa otra vez, ésta última con el objeto de abrir la posibilidad de incrementar la producción de agua potable. Ambas ósmosis están provistas de un sistema de pretratamiento físico-químico (para adecuar la calidad del agua de entrada a las condiciones requeridas por las membranas en ambos casos), y un sistema de limpieza química. En todos los ensayos se usa como fuente de disolución concentrada (agua salada), el rechazo de un bastidor de ósmosis inversa de una desaladora convencional de agua de mar. La fuente de agua dulce marca la distinción entre dos tipos de ensayos: ensayos con el efluente del tratamiento terciario de una depuradora convencional, con lo que se estudia el comportamiento de la membrana ante el ensuciamiento; y ensayos con agua permeada, que permiten estudiar el comportamiento ideal de la membrana. Los resultados de los ensayos con agua salobre ponen de manifiesto problemas de ensuciamiento de la membrana, el caudal de paso a través de la misma disminuye con el tiempo y este efecto se ve incrementado con el aumento de la temperatura del agua. Este fenómeno deriva en una modificación del pretratamiento de la ósmosis directa añadiendo un sistema de ultrafiltración que ha permitido que la membrana presente un comportamiento estable en el tiempo. Los ensayos con agua permeada han hecho posible estudiar el comportamiento “ideal” de la membrana y se han obtenido las condiciones óptimas de operación y a las que se debe tender, consiguiendo tasas de recuperación de energía de 1,6; lo que supone pasar de un consumo de 2,44 kWh/m3 de un tren convencional de ósmosis a 2,28 kWh/m3 al añadir un sistema de ósmosis directa. El objetivo de futuras investigaciones es llegar a tasas de recuperación de 1,9, lo que supondría alcanzar consumos inferiores a 2 kWh/m3. Con esta tesis se concluye que el proceso propuesto permite dar un paso más en la reducción del consumo energético en desalación, además de mitigar los efectos del vertido de salmuera en el medio marino puesto que se reduce tanto el caudal como la salinidad del vertido, siendo además aplicable a plantas ya existentes y planteando importantes ventajas económicas a plantas nuevas, concebidas con este diseño. As a consequence of the desalination process, a discharge of a hypersaline water or brine in the sea is produced. The salinity of these discharges varies, depending on the type of intake and the treatment process. Many of the habitats and biocenosis of marine ecosystems are adapted to an almost constant salinity environment and they are very susceptible to salinity increases caused by these discharges. Besides the brine discharge, another problem posed by desalination plants, is the high energy consumption, with all the disadvantages that this involves: high cost of desalinated water for consumers, environmental pollution ... The development of methods of disposal, brine management tools, studies of saline plume ... has sought the mitigation of these effects on marine ecosystems. The development of reverse osmosis membranes, pump design and energy recovery systems have also enabled the reduction of energy consumption in desalination plants. However, these fields seem to have reached a technological ceiling which is difficult to exceed in recent times. Osmotic power is proposed as a new way to achieve the reduction of energy consumption in seawater desalination, through the energy recovery from the brine. This thesis mainly tries to achieve the following objectives: reduction of energy consumption in desalination, mitigation of the brine discharge impact on the environment and become a new tool in the management of the brine. This paper proposes the development of a new process, that uses the phenomenon of forward osmosis through semipermeable membranes and seeks the synergy desalination-wastewater reuse, combining both into a single treatment process within the integral water cycle. To verify the production, quality and performance of the process we have created a pilot plant. This pilot plant, located in Alicante II desalination plant, has been designed and built in a scale that allows to carry out the tests with minimum size commercial equipment. The aim is that the results can be extrapolated to larger sizes, preventing that the scale affects the accuracy and reliability of the results. In the projected plant, the discharge of a reverse osmosis desalination plant and the effluent of a convencional tertiary treatment of a wastewater plant, go through a forward osmosis module, and then through a reverse osmosis, in order to open the possibility of increasing potable water production. Both osmosis systems are provided with a physicochemical pretreatment (in order to obtain the required conditions for the membranes in both cases), and a chemical cleaning system. In all tests, it is used as a source of concentrated solution (salt water), the rejection of a rack of a conventional reverse osmosis seawater desalination. The source of fresh water makes the difference between two types of tests: test with the effluent from a tertiary treatment of a conventional wastewater treatment plant (these tests study the behavior of the membrane facing the fouling) and tests with permeate, which allow us to study the ideal behavior of the membrane. The results of the tests with brackish water show fouling problems, the flow rate through the membrane decreases with the time and this effect is increased with water temperature. This phenomenon causes the need for a modification of the pretreatment of the direct osmosis module. An ultrafiltration system is added to enable the membrane to present a stable behavior . The tests with permeate have made possible the study of the ideal behavior of the membrane and we have obtained the optimum operating conditions. We have achieved energy recovery rates of 1.6, which allows to move from a consumption of 2.44 kWh/m3 in a conventional train of reverse osmosis to 2.28 kWh / m3 if it is added the direct osmosis system. The goal of future researches is to achieve recovery rates of 1.9, which would allow to reach a consumption lower than 2 kWh/m3. This thesis concludes that the proposed process allows us to take a further step in the reduction of the energy consumption in desalination. We must also add the mitigation of the brine discharge effects on the marine environment, due to the reduction of the flow and salinity of the discharge. This is also applicable to existing plants, and it suggests important economic benefits to new plants that will be built with this design.
Resumo:
The distribution and composition of Amphipoda assemblages were analysed off the coasts of Alicante (Spain, Western Mediterranean), a disturbed area affected by several co-occurring anthropogenic impacts. Although differences among sampled stations were mainly related to natural parameters, anthropogenic activities were linked with changes in amphipod assemblages. Expansion of the Port of Alicante, a sewage outfall and a high salinity brine discharge could be causing the disappearance of amphipods at stations closer to these disturbances. However, the completion of port enlargement works and mitigatory dilution of the brine discharge has led to the recovery of the amphipod assemblage. Among the natural parameters, depth determines the distribution of some of the species. While Siphonoecetes sabatieri was abundant at shallow stations, Ampelisca spp., Photis longipes, Pseudolirius kroyeri, Apherusa chiereghinii and Phtisica marina were more abundant at deeper stations. Grain size and percentage of organic matter also influenced amphipod distribution, resulting in changes in species composition and in the relative percentages of different trophic groups. Species such as Ampelisca brevicornis, Perioculodes longimanus, Urothoe hesperiae and Urothoe elegans were more abundant at stations with a high content of fine sand. Carnivorous species, mainly of the Oedicerotidae family, were more abundant at those stations with a low organic matter content, while detritivorous species were more abundant at stations with a higher mud content. Among 62 identified species, three were reported for the first time from the Spanish Mediterranean coast, two species were recorded for the second time and a new species of Siphonoecetes was found, Siphonoecetes (Centraloecetes) bulborostrum. These results confirm the need for further data on amphipods from the Mediterranean Spanish coast.
Resumo:
Development of desalination projects requires simple methodologies and tools for cost-effective and environmentally-sensitive management. Sentinel taxa and biotic indices are easily interpreted in the perspective of environment management. Echinoderms are potential sentinel taxon to gauge the impact produced by brine discharge and the BOPA index is considered an effective tool for monitoring different types of impact. Salinity increase due to desalination brine discharge was evaluated in terms of these two indicators. They reflected the environmental impact and recovery after implementation of a mitigation measure. Echinoderms disappeared at the station closest to the discharge during the years with highest salinity and then recovered their abundance after installation of a diffuser reduced the salinity increase. In the same period, BOPA responded due to the decrease in sensitive amphipods and the increase in tolerant polychaete families when salinities rose. Although salinity changes explained most of the observed variability in both indicators, other abiotic parameters were also significant in explaining this variability.
Resumo:
It is well known that the neutralisation of Bayer liquor with seawater causes the precipitation of stable alkaline products and a reduction in pH and dissolved metal concentrations in the effluent. However, there is limited information available on solution chemistry effects on the stability and reaction kinetics of these precipitates. This investigation shows the influence of reactive species (magnesium and calcium) in seawater on precipitate stabilities and volumetric efficiencies during the neutralisation of bauxite refinery residues. Correlations between synthetic seawater solutions and real samples of seawater (filtered seawater, nanofiltered seawater and reverse osmosis brine) have been made. These investigations have been used to confirm that alternative seawater sources can be used to increase the productivity potential of the neutralisation process with minimal implications on the composition and stability of precipitates formed. The volume efficiency of the neutralisation process using synthetic analogues has been shown to be almost directly proportional with the concentration of magnesium. This was further confirmed in the nanofiltered seawater and reverse osmosis brine that showed increases in the efficiency of neutralisation by factors of 3 and 2 compared to seawater, which corresponds with relatively the same increase in the concentration of magnesium in these alternative seawater sources. An assessment of the chemical stability of the precipitates, volumetric efficiency, and discharge water quality have been determined using numerous techniques that include pH, conductivity, inductively coupled plasma optical emission spectroscopy, infrared spectroscopy, thermogravimetric analysis coupled to mass spectrometry and X-ray diffraction. Correlations between synthetic solution compositions and alternative seawater sources have been used to determine if alternative seawater sources are potential substitutes for seawater based on improvements in productivity, implementation costs, savings to operations and environmental benefits.
Resumo:
[EN] Confluence of anthropogenic influences is common in coastal areas (e.g., disposal of different pollutants like industrial and domestic sewage, brine, etc.). In this study we assessed whether the combined disposal of domestic sewage and brine altered patterns in the abundance and assemblage structure of subtidal meiofauna inhabiting sandy seabeds. Samples were collected in May 2008 and January 2009 at varying distances (0, 15, and 30 m) from the discharge point. Meiofaunal abundances were consistently larger at 0 m (1663.05 ± 1076.86 ind 10 cm?2, mean ± standard error) than at 15 m (471.21 ± 307.97 ind 10 cm?2) and 30 m (316.50 ± 256.85 ind 10 cm?2) from the discharge outfall. This pattern was particularly accentuated for nematodes. Proximity to the discharge point also altered patterns in meiofaunal assemblage structure, though temporal shifts in the sedimentary composition also contributed to explain differences in the meiofaunal assemblage structure. As a result, meiofauna may be a reliable tool for monitoring studies of the combined disposal of sewage and brine as long as potential confounding factors (here temporal changes in grain size composition) are considered.
Resumo:
Two-stroke outboard boat engines using total loss lubrication deposit a significant proportion of their lubricant and fuel directly into the water. The purpose of this work is to document the velocity and concentration field characteristics of a submerged swirling water jet emanating from a propeller in order to provide information on its fundamental characteristics. Measurements of the velocity and concentration field were performed in a turbulent jet generated by a model boat propeller (0.02 m diameter) operating at 1500 rpm and 3000 rpm. The measurements were carried out in the Zone of Established Flow up to 50 propeller diameters downstream of the propeller. Both the mean axial velocity profile and the mean concentration profile showed self-similarity. Further, the stand deviation growth curve was linear. The effects of propeller speed and dye release location were also investigated.
Resumo:
Aim: This paper is a report of a study conducted to describe emergency department nurses' understanding and experiences of implementing discharge planning. ---------- Background: Discharge planning in the emergency department is an important issue because of increased healthcare costs and greater emphasis on continuity of care. When executed as a collaborative process involving a multi-disciplinary team with the patient and family, discharge planning provides continuity of care for patients, less demand on hospitals, improvement in community services and in the services of other healthcare organizations. ---------- Method: The qualitative approach of phenomenography was used in this study. Thirty-two emergency department nurses were recruited between July and September 2005. Semi-structured interviews were conducted. ---------- Findings: From interviewees' descriptions of implementing discharge planning, six categories were established: implementing discharge planning as 'getting rid of my patients', completing routines, being involved in patient education, professionally accountable practice, autonomous practice and demonstrating professional emergency department nursing care. The referential meaning of implementing discharge planning 'in the outcome space' was the professional commitment to emergency department provision of effective discharge services. ---------- Conclusion: The results of this research contribute to knowledge of emergency department nurses' experience in the implementation of the discharge planning process. Key requirements for the provision of manageable discharge services both in Taiwan and worldwide highlighted by this study include adequate workloads, sufficient time, clear policies and standards of discharge planning and enhancement of professional commitment.
Resumo:
Discharge planning has become increasingly important, with current trends toward shorter hospital stays, increased health care costs, and more community-based health services. Effective discharge planning ensures the safety and ongoing care for patients,1 and it also benefits health care providers and organizations. It results in shorter hospital stays, fewer readmissions, higher access rates to post-hospitalization services, greater patient satisfaction with the discharge, and improved quality of life and continuity of care.[2] and [3] All acute care patients and their caregivers require some degree of preparation for discharge home—education about their health status, risks, and treatment; help setting health goals and maintaining a good level of self-care; information about community resources; and follow-up appointments and referrals to appropriate community health providers. Inadequate preparation exposes the patient to unnecessary risks of recurrence or complications of the acute complaint, neglect of nonacute comorbidities, mismanagement and side effects of medication, disruption of family and social life, emotional distress, and financial loss.[2], [3] and [4] The result may be re-presentation to the emergency department. It is noteworthy that up to 18% of ED presentations are revisits within 72 hours of the original visit5; many of these are considered preventable.6 It is a primary responsibility of nurses to ensure that patients return to the community adequately prepared and with appropriate support in place. Up to 65% of ED patients are discharged home from the emergency department,7 and the characteristics of the emergency department and its patient population make the provision of a high standard of discharge planning uniquely difficult. In addition, discharge planning is neglected in contemporary emergency nursing—there are no monographs devoted to the subject, and there is little published research. In this article 3 issues are explored: the importance of emergency nurses’ participation in the discharge-planning process, impediments to their participation; and strategies to improve discharge planning in the emergency department.
Resumo:
Electrostatic discharge is the sudden and brief electric current that flashes between two objects at different voltages. This is a serious issue ranging in application from solid-state electronics to spectacular and dangerous lightning strikes (arc flashes). The research herein presents work on the experimental simulation and measurement of the energy in an electrostatic discharge. The energy released in these discharges has been linked to ignitions and burning in a number of documented disasters and can be enormously hazardous in many other industrial scenarios. Simulations of electrostatic discharges were designed to specifications by IEC standards. This is typically based on the residual voltage/charge on the discharge capacitor, whereas this research examines the voltage and current in the actual spark in order to obtain a more precise comparative measurement of the energy dissipated.