891 resultados para Bridges Live loads
Resumo:
"Prepared by the Office of Housing and Building Technology, Center for Building Technology, Institute for Applied Technology, National Bureau of Standards, Washington, D.C."
Resumo:
In current bridge management systems (BMSs), load and speed restrictions are applied on unhealthy bridges to keep the structure safe and serviceable for as long as possible. But the question is, whether applying these restrictions will always decrease the internal forces in critical components of the bridge and enhance the safety of the unhealthy bridges. To find the answer, this paper for the first time in literature, looks into the design aspects through studying the changes in demand by capacity ratios of the critical components of a bridge under the train loads. For this purpose, a structural model of a simply supported bridge, whose dynamic behaviour is similar to a group of real railway bridges, is developed. Demand by capacity ratios of the critical components of the bridge are calculated, to identify their sensitivity to increase of speed and magnitude of live load. The outcomes of this study are very significant as they show that, on the contrary to what is expected, by applying restriction on speed, the demand by capacity ratio of components may increase and make the bridge unsafe for carrying live load. Suggestions are made to solve the problem.
Resumo:
The dynamic interaction of vehicles and bridges results in live loads being induced into bridges that are greater than the vehicle’s static weight. To limit this dynamic effect, the Iowa Department of Transportation (DOT) currently requires that permitted trucks slow to five miles per hour and span the roadway centerline when crossing bridges. However, this practice has other negative consequences such as the potential for crashes, impracticality for bridges with high traffic volumes, and higher fuel consumption. The main objective of this work was to provide information and guidance on the allowable speeds for permitted vehicles and loads on bridges .A field test program was implemented on five bridges (i.e., two steel girder bridges, two pre-stressed concrete girder bridges, and one concrete slab bridge) to investigate the dynamic response of bridges due to vehicle loadings. The important factors taken into account during the field tests included vehicle speed, entrance conditions, vehicle characteristics (i.e., empty dump truck, full dump truck, and semi-truck), and bridge geometric characteristics (i.e., long span and short span). Three entrance conditions were used: As-is and also Level 1 and Level 2, which simulated rough entrance conditions with a fabricated ramp placed 10 feet from the joint between the bridge end and approach slab and directly next to the joint, respectively. The researchers analyzed and utilized the field data to derive the dynamic impact factors (DIFs) for all gauges installed on each bridge under the different loading scenarios.
Resumo:
This paper discusses the statistical analyses used to derive bridge live loads models for Hong Kong from a 10-year weigh-in-motion (WIM) data. The statistical concepts required and the terminologies adopted in the development of bridge live load models are introduced. This paper includes studies for representative vehicles from the large amount of WIM data in Hong Kong. Different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc are first analyzed by various stochastic processes in order to obtain the mathematical distributions of these parameters. As a prerequisite to determine accurate bridge design loadings in Hong Kong, this study not only takes advantages of code formulation methods used internationally but also presents a new method for modelling collected WIM data using a statistical approach.
Resumo:
El fenómeno de fatiga es uno de los condicionantes más importantes en el diseño de puentes metálicos y mixtos bajo la acción cíclica de fuertes sobrecargas reales. Hoy en día, ha tomado mayor relevancia en el ámbito de puentes de carretera debido al aumento sustancial de la intensidad de tráfico y el peso de los vehículos. La evolución de las normativas actuales, que recogen su cálculo a partir del ELU de seguridad a fatiga, debe ir dirigida, hacia una mayor simplicidad de aplicación y un mayor rigor técnico. A partir del análisis de seis puentes mixtos de carretera proyectados recientemente (2007-2011) se pretende establecer una comparación, tanto cualitativa como cuantitativa, entre los métodos simplificados de la normativa española (antigua RPM/RPX 95 y actual EAE) y el Eurocódigo frente al Método del Daño Acumulado, caracterizado por ser más complicado de aplicar pero más riguroso. A través del análisis efectuado, se obtienen reglas prácticas sencillas y fiables para el dimensionamiento o verificación de elementos estructurales a fatiga según características principales como la tipología de la sección o la longitud de vano, entre otros. En conclusión, el trabajo que se propone desarrollar combina el análisis crítico de la base teórica con el estudio aplicado de casos reales y pretende sentar las bases para profundizar en esta área de gran interés para proyectistas. Fatigue is one of the most determining factors in the design of steel and composite bridges with dynamic loads subject to cyclic live loads. Nowadays, it has taken relevance in the field of roadway bridges due to considerable increase in the intensity of traffic and the weight of vehicles. The evolution of the current design codes, which include an analysis of the ultimate limit state of fatigue, should aim for greater ease of application and technical rigour. Based on the analysis of six composite road bridges designed recently (2007-2011), a comparison has been made, both qualitative and quantitative, between the simplified methods of the Spanish codes (current EAE and old RPM/RPX95) and Eurocode with regard to the Cumulative Damage Method, characterised for being more difficult to apply but more rigorous. Through an exhaustive analysis, a set of practical and reliable rules have been obtained for the sizing or verification of structural elements according to main characteristics such as the tipology of the cross section or the length of span, among others. In conclusion, the work developed combines the critical analysis of the theory with the applied study of real cases and sets out to lay the foundations for deepening into this area of great interest to designers.
Resumo:
In recent years a great number of high speed railway bridges have been constructed within the Spanish borders. Due to the demanding high speed trains route's geometrical requirements, bridges frequently show remarkable lengths. This fact is the main reason why railway bridges are overall longer than roadway bridges. In the same line, it is also worth highlighting the importance of high speed trains braking forces compared to vehicles. While vehicles braking forces can be tackled easily, the railway braking forces demand the existence of a fixed-point. It is generally located at abutments where the no-displacements requirement can be more easily achieved. In some other cases the fixed-point is placed in one of the interior columns. As a consequence of these bridges' length and the need of a fixed-point, temperature, creep and shrinkage strains lead to fairly significant deck displacements, which become greater with the distance to the fixed-point. These displacements need to be accommodated by the piers and bearings deformation. Regular elastomeric bearings are not able to allow such displacements and therefore are not suitable for this task. For this reason, the use of sliding PTFE POT bearings has been an extensive practice mainly because they permit sliding with low friction. This is not the only reason of the extensive use of these bearings to high-speed railways bridges. The value of the vertical loads at each bent is significantly higher than in roadway bridges. This is so mainly because the live loads due to trains traffic are much greater than vehicles. Thus, gravel rails foundation represents a non-negligible permanent load at all. All this together increases the value of vertical loads to be withstood. This high vertical load demand discards the use of conventional bearings for excessive compressions. The PTFE POT bearings' higher technology allows to accommodate this level of compression thanks to their design. The previously explained high-speed railway bridge configuration leads to a key fact regarding longitudinal horizontal loads (such as breaking forces) which is the transmission of these loads entirely to the fixed-point alone. Piers do not receive these longitudinal horizontal loads since PTFE POT bearings displayed are longitudinally free-sliding. This means that longitudinal horizontal actions on top of piers will not be forces but imposed displacements. This feature leads to the need to approach these piers design in a different manner that when piers are elastically linked to superstructure, which is the case of elastomeric bearings. In response to the previous, the main goal of this Thesis is to present a Design Method for columns displaying either longitudinally fixed POT bearings or longitudinally free PTFE POT bearings within bridges with fixed-point deck configuration, applicable to railway and road vehicles bridges. The method was developed with the intention to account for all major parameters that play a role in these columns behavior. The long process that has finally led to the method's formulation is rooted in the understanding of these column's behavior. All the assumptions made to elaborate the formulations contained in this method have been made in benefit of conservatives results. The singularity of the analysis of columns with this configuration is due to a combination of different aspects. One of the first steps of this work was to study they of these design aspects and understand the role each plays in the column's response. Among these aspects, special attention was dedicated to the column's own creep due to permanent actions such us rheological deck displacements, and also to the longitudinally guided PTFE POT bearings implications in the design of the column. The result of this study is the Design Method presented in this Thesis, that allows to work out a compliant vertical reinforcement distribution along the column. The design of horizontal reinforcement due to shear forces is not addressed in this Thesis. The method's formulations are meant to be applicable to the greatest number of cases, leaving to the engineer judgement many of the different parameters values. In this regard, this method is a helpful tool for a wide range of cases. The widespread use of European standards in the more recent years, in particular the so-called Eurocodes, has been one of the reasons why this Thesis has been developed in accordance with Eurocodes. Same trend has been followed for the bearings design implications, which are covered by the rather recent European code EN-1337. One of the most relevant aspects that this work has taken from the Eurocodes is the non-linear calculations security format. The biaxial bending simplified approach that shows the Design Method presented in this work also lies on Eurocodes recommendations. The columns under analysis are governed by a set of dimensionless parameters that are presented in this work. The identification of these parameters is a helpful for design purposes for two columns with identical dimensionless parameters may be designed together. The first group of these parameters have to do with the cross-sectional behavior, represented in the bending-curvature diagrams. A second group of parameters define the columns response. Thanks to this identification of the governing dimensionless parameters, it has been possible what has been named as Dimensionless Design Curves, which basically allows to obtain in a reduced time a preliminary vertical reinforcement column distribution. These curves are of little use nowadays, firstly because each family of curves refer to specific values of many different parameters and secondly because the use of computers allows for extremely quick and accurate calculations.