996 resultados para Brewing industry.
Resumo:
Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the autoaggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed.
Resumo:
Mode of access: Internet.
Resumo:
Acknowledgment, [1] p. at end.
Resumo:
2002 Mathematics Subject Classification: 62P30, 62P10.
Resumo:
This paper explores the extent and forms of black economic empowerment (BEE) in the South African agricultural sector through a case study of the wine industry in the Western Cape. Compared to the mining and fisheries sectors, the progress of BEE in the agricultural sector is still in the early stage. However, various forms of black entry into the wine industry, not limited to BEE deals by large corporations, began to emerge, especially since the enactment of the Broad-based Black Economic Empowerment Act (BBBEE Act), Act 53 of 2003. This paper identifies two types of BEE wineries as unique forms of black entry into the wine industry and investigates in detail their features, backgrounds and challenges by referring to several prominent examples of each type of BEE winery.
Resumo:
At head of title: Preliminary job study no. 5-113.
Resumo:
Publisher's advertisements and excerpts from other works by F. Accum on p. [i]-xxiii (3rd group) and p. [1] (at end).
Resumo:
Mode of access: Internet.
Resumo:
Advertising matter: p. 56-59.
Resumo:
Plates printed on both sides.
Resumo:
Charles A. Culberson, chairman.
Resumo:
Wheat (Triticum aestivum L.) has a long tradition as a raw material for the production of malt and beer. While breeding and cultivation efforts for barley have been highly successful in creating agronomically and brew- technical optimal specialty cultivars that have become well established as brewing barley varieties, the picture is completely different for brewing wheat. An increasing wheat beer demand results in a rising amount of raw material. Wheat has been - and still is – grown almost exclusively for the baking industry. It is this high demand that defines most of the wheat breeding objectives; and these objectives are generally not favourable in brewing industry. It is of major interest to screen wheat varieties for brewing processability and to give more focus to wheat as a brewing cereal. To obtain fast and reliable predications about the suitability of wheat cultivars a new mathematical method was developed in this work. The method allows a selection based on generally accepted quality characteristics. As selection criteria the parameters raw protein, soluble nitrogen, Kolbach index, extract and viscosity were chosen. During a triannual cultivation series, wheat varieties were evaluated on their suitability for brewing as well as stability to environmental conditions. To gain a fundamental understanding of the complex malting process, microstructural changes were evaluated and visualized by confocal laser scanning and scanning electron microscopy. Furthermore, changes observed in the micrographs were verified and endorsed by metabolic changes using established malt attributes. The degradation and formation of proteins during malting is essential for the final beer quality. To visualise fundamental protein changes taking place during malting, samples of each single process step were analysed and fractioned according their solubility. Protein fractions were analysed using a Lab-on-a-chip technique as well as OFFgel analysis. In general, a different protein distribution of wheat compared to barley or oat could be confirmed. During the malting process a degradation of proteins to small peptides and amino acids could be observed in all four Osborn fractions. Furthermore, in this study a protein profiling was performed to evaluate changes during the mashing process as well as the influence of grist composition. Differences in specific protein peaks and profile were detected for all samples during mashing. This study investigated the suitability of wheat for malting and brewing industry and closed the scientifical gap of amylolytic, cytolytic and proteolytic changes during malting and mashing.
Resumo:
This thesis examines the existing frameworks for energy management in the brewing industry and details the design, development and implementation of a new framework at a modern brewery. The aim of the research was to develop an energy management framework to identify opportunities in a systematic manner using Systems Engineering concepts and principles. This work led to a Sustainable Energy Management Framework, SEMF. Using the SEMF approach, one of Australia's largest breweries has achieved number 1 ranking in the world for water use for the production of beer and has also improved KPI's and sustained the energy management improvements that have been implemented during the past 15 years. The framework can be adapted to other manufacturing industries in the Australian context and is considered to be a new concept and a potentially important tool for energy management.