990 resultados para Breaks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Australian film industry is evolving. The days when government film agencies handed out millions of taxpayers' dollars for filmmakers to produce "Australian stories" with little regard to commercial returns are limited. If the Australian film industry is to reach mainstream audiences – and increase its relevance – then filmmakers need to take greater notice of genre movies and the possibilities they create within the financial restraints of the local industry. The $20 million Aussie vampire movie, Daybreakers, is a prototype for how this can be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

hSSB1 is a recently discovered single-stranded DNA binding protein that is essential for efficient repair of DNA double-strand breaks (DSBs) by the homologous recombination pathway. hSSB1 is required for the efficient recruitment of the MRN complex to sites of DSBs and for the efficient initiation of ATM dependent signalling. Here we explore the interplay between hSSB1 and MRN. We demonstrate that hSSB1 binds directly to NBS1, a component of the MRN complex, in a DNA damage independent manner. Consistent with the direct interaction, we observe that hSSB1 greatly stimulates the endo-nuclease activity of the MRN complex, a process that requires the C-terminal tail of hSSB1. Interestingly, analysis of two point mutations in NBS1, associated with Nijmegen breakage syndrome, revealed weaker binding to hSSB1, suggesting a possible disease mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

hSSB1 is a newly discovered single-stranded DNA (ssDNA)-binding protein that is essential for efficient DNA double-strand break signalling through ATM. However, the mechanism by which hSSB1 functions to allow efficient signalling is unknown. Here, we show that hSSB1 is recruited rapidly to sites of double-strand DNA breaks (DSBs) in all interphase cells (G1, S and G2) independently of, CtIP, MDC1 and the MRN complex (Rad50, Mre11, NBS1). However expansion of hSSB1 from the DSB site requires the function of MRN. Strikingly, silencing of hSSB1 prevents foci formation as well as recruitment of MRN to sites of DSBs and leads to a subsequent defect in resection of DSBs as evident by defective RPA and ssDNA generation. Our data suggests that hSSB1 functions upstream of MRN to promote its recruitment at DSBs and is required for efficient resection of DSBs. These findings, together with previous work establish essential roles of hSSB1 in controlling ATM activation and activity, and subsequent DSB resection and homologous recombination (HR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA double-strand break (DSB) repair via the homologous recombination pathway is a multi-stage process, which results in repair of the DSB without loss of genetic information or fidelity. One essential step in this process is the generation of extended single-stranded DNA (ssDNA) regions at the break site. This ssDNA serves to induce cell cycle checkpoints and is required for Rad51 mediated strand invasion of the sister chromatid. Here, we show that human Exonuclease 1 (Exo1) is required for the normal repair of DSBs by HR. Cells depleted of Exo1 show chromosomal instability and hypersensitivity to ionising radiation (IR) exposure. We find that Exo1 accumulates rapidly at DSBs and is required for the recruitment of RPA and Rad51 to sites of DSBs, suggesting a role for Exo1 in ssDNA generation. Interestingly, the phosphorylation of Exo1 by ATM appears to regulate the activity of Exo1 following resection, allowing optimal Rad51 loading and the completion of HR repair. These data establish a role for Exo1 in resection of DSBs in human cells, highlighting the critical requirement of Exo1 for DSB repair via HR and thus the maintenance of genomic stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incidence of sleep-related crashes has been estimated to account for approximately 20% of all fatal and severe crashes. The use of sleepiness countermeasures by drivers is an important component to reduce the incidence rates of sleep-related crashes. Taking a brief nap and stopping for a rest break are two highly publicised countermeasures for driver sleepiness and are also believed by drivers to be the most effective countermeasures. Despite this belief, there is scarce evidence to support the utility of these countermeasures for reducing driver sleepiness levels. Therefore, determining the effectiveness of these countermeasures is an important road safety concern. The current study utilised a young adult sample (N = 20) to investigate the effectiveness of a nap and an active rest break. The countermeasures effects were evaluated by physiological, behavioural (hazard perception skill), and subjective measures previously found sensitive to sleepiness. Participants initially completed two hours of a simulated driving task followed by a 15 minute nap opportunity or a 15 minute active rest break that included 10 minutes of brisk walking. After the break, participants completed one final hour of the simulated driving task. A within-subjects design was used so that each participant completed both the nap and the active rest break conditions on separate occasions. The analyses revealed that only the nap break provided any meaningful reduction in physiological sleepiness, reduced subjective sleepiness levels, and maintained hazard perception performance. In contrast, the active rest break had no effect for reducing physiological sleepiness and resulted in a decrement in hazard perception performance (i.e., an increase of reaction time latencies), with a transient reduction in subjective sleepiness levels. A number of theoretical, empirical and practical issues were identified by the current study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In eukaryotes, genomic DNA is tightly compacted into a protein-DNA complex known as chromatin. This dense structure presents a barrier to DNA-dependent processes including transcription, replication and DNA repair. The repressive structure of chromatin is overcome by ATP-dependent chromatin remodelling complexes and chromatin-modifying enzymes. There is now ample evidence that DNA double-strand breaks (DSBs) elicit various histone modifications (such as acetylation, deacetylation, and phosphorylation) that function combinatorially to control the dynamic structure of the chromatin microenvironment. The role of these mechanisms during transcription and replication has been well studied, while the research into their impact on regulation of DNA damage response is rapidly gaining momentum. How chromatin structure is remodeled in response to DNA damage and how such alterations influence DSB repair are currently significant questions. This review will summarise the major chromatin modifications and chromatin remodelling complexes implicated in the DNA damage response to DSBs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the dynamic behaviour of relative prices across seven Australian cities by applying panel unit root test procedures with structural breaks to quarterly consumer price index data for 1972 Q1–2011 Q4. We find overwhelming evidence of convergence in city relative prices. Three common structural breaks are endogenously determined at 1985, 1995, and 2007. Further, correcting for two potential biases, namely Nickell bias and time aggregation bias, we obtain half-life estimates of 2.3–3.8 quarters that are much shorter than those reported by previous research. Thus, we conclude that both structural breaks and bias corrections are important to obtain shorter half-life estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background:  Tradition has led us to believe that a heavily sedated patient is a comfortable, settled, compliant patient for whom sedation will improve outcome. The current move witnessed in clinical practice today of limiting sedation has led health care in recent years to question the benefit and necessity of routine, continuous sedation for all patients requiring mechanical ventilation. However, as a result there has been a rise in the amount of agitation being reported as being experienced by patients with the daily withdrawal of sedation. Aims:  The purpose of this paper is to review current arguments for and against perserving with agitation versus re-sedating, when it presents during the daily sedation breaks. Findings:  Of the literature reviewed, the question to re-sedate the mechanically ventilated agitated patient during sedation breaks remains an issue of contention. Although there is evidence focusing on the psychological effects of long-term sedation and sedation breaks specifically, the complex nature of critical illness in some cases means that individualized care is of paramount importance and in-depth assessment is crucial when deciding to re-sedate in the face of undetermined agitation. Agitation has been closely linked with several incidents that can be detrimental to patient safety, such as removal of lines and unplanned self-extubation. Conclusion:  The recommendations of this review are that nurses should re-commence sedation if the patient becomes agitated following a sedation break. Aims:  The purpose of this paper is to review current arguments for and against perserving with agitation versus re-sedating, when it presents during the daily sedation breaks. Findings:  Of the literature reviewed, the question to re-sedate the mechanically ventilated agitated patient during sedation breaks remains an issue of contention. Although there is evidence focusing on the psychological effects of long-term sedation and sedation breaks specifically, the complex nature of critical illness in some cases means that individualized care is of paramount importance and in-depth assessment is crucial when deciding to re-sedate in the face of undetermined agitation. Agitation has been closely linked with several incidents that can be detrimental to patient safety, such as removal of lines and unplanned self-extubation. Conclusion:  The recommendations of this review are that nurses should re-commence sedation if the patient becomes agitated following a sedation break.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to compare the effects of two commonly utilised sleepiness countermeasures: a nap break and an active rest break. The effects of the countermeasures were evaluated by physiological (EEG), subjective, and driving performance measures. Participants completed two hours of simulated driving, followed by a 15 minute nap break or a 15 minute active rest break then completed the final hour of simulated driving. The nap break reduced EEG and subjective sleepiness. The active rest break did not reduce EEG sleepiness, with sleepiness levels eventually increasing, and resulted in an immediate reduction of subjective sleepiness. No difference was found between the two breaks for the driving performance measure. The immediate reduction of subjective sleepiness after the active rest break could leave drivers with erroneous perceptions of their sleepiness, particularly with increases of physiological sleepiness after the break.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma plumes with exotically segmented channel structure and plasma bullet propagation are produced in atmospheric plasma jets. This is achieved by tailoring interruptions of a continuous DC power supply over the time scales of lifetimes of residual electrons produced by the preceding discharge phase. These phenomena are explained by studying the plasma dynamics using nanosecond-precision imaging. One of the plumes is produced using 2-10μs interruptions in the 8kV DC voltage and features a still bright channel from which a propagating bullet detaches. A shorter interruption of 900ns produces a plume with the additional long conducting dark channel between the jet nozzle and the bright area. The bullet size, formation dynamics, and propagation speed and distance can be effectively controlled. This may lead to micrometer-and nanosecond-precision delivery of quantized plasma bits, warranted for next-generation health, materials, and device technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives The purpose for this study was to determine the relative benefit of nap and active rest breaks for reducing driver sleepiness. Methods Participants were 20 healthy young adults (20-25 years), including 8 males and 12 females. A counterbalanced within-subjects design was used such that each participant completed both conditions on separate occasions, a week apart. The effects of the countermeasures were evaluated by established physiological (EEG theta and alpha absolute power), subjective (Karolinska Sleepiness Scale), and driving performance measures (Hazard Perception Task). Participants woke at 5am, and undertook a simulated driving task for two hours; each participant then had either a 15-minute nap opportunity or a 15-minute active rest break that included 10 minutes of brisk walking, followed by another hour of simulated driving. Results The nap break reduced EEG theta and alpha absolute power and eventually reduced subjective sleepiness levels. In contrast, the active rest break did not reduce EEG theta and alpha absolute power levels with the power levels eventually increasing. An immediate reduction of subjective sleepiness was observed, with subjective sleepiness increasing during the final hour of simulated driving. No difference was found between the two breaks for hazard perception performance. Conclusions Only the nap break produced a significant reduction in physiological sleepiness. The immediate reductions of subjective sleepiness following the active rest break could leave drivers with erroneous perceptions of their sleepiness, particularly as physiological sleepiness continued to increase after the break.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-strand breaks represent an extremely cytolethal form of DNA damage and thus pose a serious threat to the preservation of genetic and epigenetic information. Though it is well-known that double-strand breaks such as those generated by ionising radiation are among the principal causative factors behind mutations, chromosomal aberrations, genetic instability and carcino-genesis, significantly less is known about the epigenetic consequences of double-strand break formation and repair for carcinogenesis. Double-strand break repair is a highly coordinated process that requires the unravelling of the compacted chromatin structure to facilitate repair machinery access and then restoration of the original undamaged chromatin state. Recent experimental findings have pointed to a potential mechanism for double-strand break-induced epigenetic silencing. This review will discuss some of the key epigenetic regulatory processes involved in double-strand break (DSB) repair and how incomplete or incorrect restoration of chromatin structure can leave a DSB-induced epigenetic memory of damage with potentially pathological repercussions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation therapy is a widely used therapeutic approach for cancer. To improve the efficacy of radiotherapy there is an intense interest in combining this modality with two broad classes of compounds, radiosensitizers and radioprotectors. These either enhance tumour-killing efficacy or mitigate damage to surrounding non-malignant tissue, respectively. Radiation exposure often results in the formation of DNA double-strand breaks, which are marked by the induction of H2AX phosphorylation to generate γH2AX. In addition to its essential role in DDR signalling and coordination of double-strand break repair, the ability to visualize and quantitate γH2AX foci using immunofluorescence microscopy techniques enables it to be exploited as an indicator of therapeutic efficacy in a range of cell types and tissues. This review will explore the emerging applicability of γH2AX as a marker for monitoring the effectiveness of radiation-modifying compounds.