939 resultados para Brane Dynamics in Gauge Theories


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frohlich, Morchio and Strocchi long ago proved that the Lorentz invariance is spontaneously broken in QED because of infrared effects. We develop a simple model where the consequences of this breakdown can be explicitly and easily calculated. For this purpose, the superselected U(1) charge group of QED is extended to a superselected ``Sky'' group containing direction-dependent gauge transformations at infinity. It is the analog of the Spi group of gravity. As Lorentz transformations do not commute with Sky, they are spontaneously broken. These Abelian considerations and model are extended to non-Abelian gauge symmetries. Basic issues regarding the observability of twisted non-Abelian gauge symmetries and of the asymptotic ADM symmetries of quantum gravity are raised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that the correct mathematical implementation of symmetry in the geometric formulation of classical field theory leads naturally beyond the concept of Lie groups and their actions on manifolds, out into the realm of Lie group bundles and, more generally, of Lie groupoids and their actions on fiber bundles. This applies not only to local symmetries, which lie at the heart of gauge theories, but is already true even for global symmetries when one allows for fields that are sections of bundles with (possibly) non-trivial topology or, even when these are topologically trivial, in the absence of a preferred trivialization. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We dimensionally reduce the ABJM model, obtaining a two-dimensional theory that can be thought of as a 'master action'. This encodes information about both T- and S-duality, i.e. describes fundamental (F1) and D-strings (D1) in 9 and 10 dimensions. The Higgsed theory at large VEV, (v) over tilde, and large k yields D1-brane actions in 9d and 10d, depending on which auxiliary fields are integrated out. For N = 1 there is a map to a Green-Schwarz string wrapping a nontrivial circle in C(4)/Z(k).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore the idea that chaos concepts might be useful for understanding the thermalization in gauge theories. The SU(2) Higgs model is discussed as a prototype of system with gauge fields coupled to matter fields. Through the numerical solution of the equations of motion, we are able to characterize chaotic behavior via the corresponding Lyapunov exponent. Then it is demonstrated that the system's approach to equilibrium can be understood through direct application of the principles of Statistical Mechanics. © 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scheme inspired in Lie algebra extensions is introduced that enlarges gauge models to allow some coupling between space-time and gauge space. Everything may be written in terms of a generalized covariant derivative including usual differential plus purely algebraic terms. A noncovariant vacuum appears, introducing a natural symmetry breaking, but currents satisfy conservation laws alike those found in gauge theories. © 1991 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, based on the holographic techniques, we explore the hydrodynamics of charge diffusion phenomena in non commutative N = 4 SYM plasma at strong coupling. In our analysis, we compute the R charge diffusion rates both along commutative as well as the non commutative coordinates of the brane. It turns out that unlike the case for the shear viscosity, the DC conductivity along the non commutative direction of the brane differs significantly from that of its cousin corresponding to the commutative direction of the brane. Such a discrepancy however smoothly goes away in the limit of the vanishing non commutativity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that the Fayet-Illiopoulos D term in N= 1 supersymmetric spontaneously broken U( 1) gauge theories may get one-loop corrections, even when trace U( 1) charges are zero. However, these corrections are only logarithmically divergent and hence do not affect the naturalness of the theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that the Fayet-Illiopoulos D term in N= 1 supersymmetric spontaneously broken U( 1) gauge theories may get one-loop corrections, even when trace U( 1) charges are zero. However, these corrections are only logarithmically divergent and hence do not affect the naturalness of the theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The one-loop quadratically divergent mass corrections in globally supersymmetric gauge theories with spontaneously broken abelian and non-abelian gauge symmetry are studied. Quadratically divergent mass corrections are found to persist in an abelian model with an ABJ anomaly. However, additional supermultiplets necessary to cancel the ABJ anomaly, turn out to be sufficient to eliminate the quadratic divergences as well, rendering the theory natural. Quadratic divergences are shown to vanish also in the case of an anomaly free model with spontaneously broken non-abelian gauge symmetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An anomalous multiflavor chiral theory, with the gauge group SU(N), is studied using non-Abelian bosonization. The theory can be made gauge invariant by introducing Wess-Zumino fields and it is particularly simple if the Jackiw-Rajaraman parameter equals 2. In the strong-coupling limit, the low-energy effective theory only contains light unconfined fermions which interact weakly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several recent theoretical and computer simulation studies have considered solvation dynamics in a Brownian dipolar lattice which provides a simple model solvent for which detailed calculations can be carried out. In this article a fully microscopic calculation of the solvation dynamics of an ion in a Brownian dipolar lattice is presented. The calculation is based on the non‐Markovian molecular hydrodynamic theory developed recently. The main assumption of the present calculation is that the two‐particle orientational correlation functions of the solid can be replaced by those of the liquid state. It is shown that such a calculation provides an excellent agreement with the computer simulation results. More importantly, the present calculations clearly demonstrate that the frequency‐dependent dielectric friction plays an important role in the long time decay of the solvation time correlation function. We also find that the present calculation provides somewhat better agreement than either the dynamic mean spherical approximation (DMSA) or the Fried–Mukamel theory which use the simulated frequency‐dependent dielectric function. It is found that the dissipative kernels used in the molecular hydrodynamic approach and in the Fried–Mukamel theory are vastly different, especially at short times. However, in spite of this disagreement, the two theories still lead to comparable results in good agreement with computer simulation, which suggests that even a semiquantitatively accurate dissipative kernel may be sufficient to obtain a reliable solvation time correlation function. A new wave vector and frequency‐dependent dissipative kernel (or memory function) is proposed which correctly goes over to the appropriate expressions in both the single particle and the collective limits. This form is expected to lead to better results than all the existing descriptions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a synthesis of the functional integral and operator approaches we discuss the fermion-buson mapping and the role played by the Bose field algebra in the Hilbert space of two-dimensional gauge and anomalous gauge field theories with massive fermions. In QED, with quartic self-interaction among massive fermions, the use of an auxiliary vector field introduces a redundant Bose field algebra that should not be considered as an element of the intrinsic algebraic structure defining the model. In anomalous chiral QED, with massive fermions the effect of the chiral anomaly leads to the appearance in the mass operator of a spurious Bose field combination. This phase factor carries no fermion selection rule and the expected absence of Theta-vacuum in the anomalous model is displayed from the operator solution. Even in the anomalous model with massive Fermi fields, the introduction of the Wess-Zumino field replicates the theory, changing neither its algebraic content nor its physical content. (C) 2002 Elsevier B.V. (USA).