998 resultados para Branching process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a branching model, which we call the collision branching process (CBP), that accounts for the effect of collisions, or interactions, between particles or individuals. We establish that there is a unique CBP, and derive necessary and sufficient conditions for it to be nonexplosive. We review results on extinction probabilities, and obtain explicit expressions for the probability of explosion and the expected hitting times. The upwardly skip-free case is studied in some detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maximum M of a critical Bienaymé-Galton-Watson process conditioned on the total progeny N is studied. Imbedding of the process in a random walk is used. A limit theorem for the distribution of M as N → ∞ is proved. The result is trasferred to the non-critical processes. A corollary for the maximal strata of a random rooted labeled tree is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Superadditive Bisexual Galton-Watson Branching Process is considered and the total number of mating units, females and males, until the n-th generation, are studied. In particular some results about the stochastic monotony, probability generating functions and moments are obtained. Finally, the limit behaviour of those variables suitably normed is investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS subject classification: 60J80, 60J15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 60J80, Secondary 62F12, 60G99.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80, 62P05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80, 62F12, 62P10

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80, 60F05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 60J85, 92D25.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We extend the Harris regularity condition for ordinary Markov branching process to a more general case of non-linear Markov branching process. A regularity criterion which is very easy to check is obtained. In particular, we prove that a super-linear Markov branching process is regular if and only if the per capita offspring mean is less than or equal to I while a sub-linear Markov branching process is regular if the per capita offspring mean is finite. The Harris regularity condition then becomes a special case of our criterion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This note provides a new probabilistic approach in discussing the weighted Markov branching process (WMBP) which is a natural generalisation of the ordinary Markov branching process. Using this approach, some important characteristics regarding the hitting times of such processes can be easily obtained. In particular, the closed forms for the mean extinction time and conditional mean extinction time are presented. The explosion behaviour of the process is investigated and the mean explosion time is derived. The mean global holding time and the mean total survival time are also obtained. The close link between these newly developed processes and the well-known compound Poisson processes is investigated. It is revealed that any weighted Markov branching process (WMBP) is a random time change of a compound Poisson process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)