996 resultados para Brain anatomy
Resumo:
El desarrollo de las técnicas de imágenes por resonancia magnética han permitido el estudio y cuantificación, in vivo, de los cambios que ocurren en la morfología cerebral ligados a procesos tales como el neurodesarrollo, el envejecimiento, el aprendizaje o la enfermedad. Un gran número de métodos de morfometría han sido desarrollados con el fin de extraer la información contenida en estas imágenes y traducirla en indicadores de forma o tamaño, tales como el volumen o el grosor cortical; marcadores que son posteriormente empleados para encontrar diferencias estadísticas entre poblaciones de sujetos o realizar correlaciones entre la morfología cerebral y, por ejemplo, la edad o la severidad de determinada enfermedad. A pesar de la amplia variedad de biomarcadores y metodologías de morfometría, muchos estudios sesgan sus hipótesis, y con ello los resultados experimentales, al empleo de un número reducido de biomarcadores o a al uso de una única metodología de procesamiento. Con el presente trabajo se pretende demostrar la importancia del empleo de diversos métodos de morfometría para lograr una mejor caracterización del proceso que se desea estudiar. En el mismo se emplea el análisis de forma para detectar diferencias, tanto globales como locales, en la morfología del tálamo entre pacientes adolescentes con episodios tempranos de psicosis y adolescentes sanos. Los resultados obtenidos demuestran que la diferencia de volumen talámico entre ambas poblaciones de sujetos, previamente descrita en la literatura, se debe a una reducción del volumen de la región anterior-mediodorsal y del núcleo pulvinar del tálamo de los pacientes respecto a los sujetos sanos. Además, se describe el desarrollo de un estudio longitudinal, en sujetos sanos, que emplea simultáneamente distintos biomarcadores para la caracterización y cuantificación de los cambios que ocurren en la morfología de la corteza cerebral durante la adolescencia. A través de este estudio se revela que el proceso de “alisado” que experimenta la corteza cerebral durante la adolescencia es consecuencia de una disminución de la profundidad, ligada a un incremento en el ancho, de los surcos corticales. Finalmente, esta metodología es aplicada, en un diseño transversal, para el estudio de las causas que provocan el decrecimiento tanto del grosor cortical como del índice de girificación en adolescentes con episodios tempranos de psicosis. ABSTRACT The ever evolving sophistication of magnetic resonance image techniques continue to provide new tools to characterize and quantify, in vivo, brain morphologic changes related to neurodevelopment, senescence, learning or disease. The majority of morphometric methods extract shape or size descriptors such as volume, surface area, and cortical thickness from the MRI image. These morphological measurements are commonly entered in statistical analytic approaches for testing between-group differences or for correlations between the morphological measurement and other variables such as age, sex, or disease severity. A wide variety of morphological biomarkers are reported in the literature. Despite this wide range of potentially useful biomarkers and available morphometric methods, the hypotheses and findings of the grand majority of morphological studies are biased because reports assess only one morphometric feature and usually use only one image processing method. Throughout this dissertation biomarkers and image processing strategies are combined to provide innovative and useful morphometric tools for examining brain changes during neurodevelopment. Specifically, a shape analysis technique allowing for a fine-grained assessment of regional thalamic volume in early-onset psychosis patients and healthy comparison subjects is implemented. Results show that disease-related reductions in global thalamic volume, as previously described by other authors, could be particularly driven by a deficit in the anterior-mediodorsal and pulvinar thalamic regions in patients relative to healthy subjects. Furthermore, in healthy adolescents different cortical features are extracted and combined and their interdependency is assessed over time. This study attempts to extend current knowledge of normal brain development, specifically the largely unexplored relationship between changes of distinct cortical morphological measurements during adolescence. This study demonstrates that cortical flattening, present during adolescence, is produced by a combination of age-related increase in sulcal width and decrease in sulcal depth. Finally, this methodology is applied to a cross-sectional study, investigating the mechanisms underlying the decrease in cortical thickness and gyrification observed in psychotic patients with a disease onset during adolescence.
Resumo:
Previous studies have suggested that bipolar disorder (BD) is associated with alterations in neuronal plasticity, but the effects of the progression of illness on brain anatomy have been poorly investigated. We studied the correlation between length of illness, age, age at onset, and the number of previous episodes and total brain, total gray, and total white matter volumes in BD, unipolar (UP) and healthy control (HC) subjects. Thirty-six BD, 31 UP and 55 HCs underwent a 1.5 T brain magnetic resonance imaging scan, and gray and white matter volumes were manually traced blinded to the subjects` diagnosis. Partial correlation analysis showed that length of illness was inversely correlated with total gray matter volume after adjusting for total intracranial volume in BD (r(p)=-0.51; p=0.003) but not in UP subjects (r(p)=-0.23; p=0.21). Age at illness onset and the number of previous episodes were not significantly correlated with gray matter volumes in BD or UP subjects. No significant correlation with total white matter volume was observed. These results suggest that the progression of illness may be associated with abnormal cellular plasticity. Prospective longitudinal studies are necessary to elucidate the long-term effects of illness progression on brain structure in major mood disorders. (C) 2008 Published by Elsevier B.V.
Resumo:
Anatomical structures and mechanisms linking genes to neuropsychiatric disorders are not deciphered. Reciprocal copy number variants at the 16p11.2 BP4-BP5 locus offer a unique opportunity to study the intermediate phenotypes in carriers at high risk for autism spectrum disorder (ASD) or schizophrenia (SZ). We investigated the variation in brain anatomy in 16p11.2 deletion and duplication carriers. Beyond gene dosage effects on global brain metrics, we show that the number of genomic copies negatively correlated to the gray matter volume and white matter tissue properties in cortico-subcortical regions implicated in reward, language and social cognition. Despite the near absence of ASD or SZ diagnoses in our 16p11.2 cohort, the pattern of brain anatomy changes in carriers spatially overlaps with the well-established structural abnormalities in ASD and SZ. Using measures of peripheral mRNA levels, we confirm our genomic copy number findings. This combined molecular, neuroimaging and clinical approach, applied to larger datasets, will help interpret the relative contributions of genes to neuropsychiatric conditions by measuring their effect on local brain anatomy.Molecular Psychiatry advance online publication, 25 November 2014; doi:10.1038/mp.2014.145.
Resumo:
Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset movement disorder affecting FMR1 premutation carriers, is associated with cerebral and cerebellar lesions. The aim of this study was to test whether computational anatomy can detect similar patterns in asymptomatic FMR1 premutation carriers (mean age 46.7 years) with qualitatively normal -appearing grey and white matter on brain MRI. We used a multimodal imaging protocol to characterize brain anatomy by automated assessment of gray matter volume and white matter properties. Structural changes in the hippocampus and in the cerebellar motor network with decreased gray matter volume in lobule VI and white matter alterations of the corresponding afferent projections through the middle cerebellar peduncles are demonstrated. Diffuse subcortical white matter changes in both hemispheres, without corresponding gray matter alterations, are only identified through age × group interactions. We interpret the hippocampal fimbria and cerebellar changes as early alterations with a possible neurodevelopmental origin. In contrast, progression of the diffuse cerebral hemispheric white matter changes suggests a neurodegenerative process, leading to late-onset lesions, which may mark the imminent onset of FXTAS.
Resumo:
Recent advances in signal analysis have engendered EEG with the status of a true brain mapping and brain imaging method capable of providing spatio-temporal information regarding brain (dys)function. Because of the increasing interest in the temporal dynamics of brain networks, and because of the straightforward compatibility of the EEG with other brain imaging techniques, EEG is increasingly used in the neuroimaging community. However, the full capability of EEG is highly underestimated. Many combined EEG-fMRI studies use the EEG only as a spike-counter or an oscilloscope. Many cognitive and clinical EEG studies use the EEG still in its traditional way and analyze grapho-elements at certain electrodes and latencies. We here show that this way of using the EEG is not only dangerous because it leads to misinterpretations, but it is also largely ignoring the spatial aspects of the signals. In fact, EEG primarily measures the electric potential field at the scalp surface in the same way as MEG measures the magnetic field. By properly sampling and correctly analyzing this electric field, EEG can provide reliable information about the neuronal activity in the brain and the temporal dynamics of this activity in the millisecond range. This review explains some of these analysis methods and illustrates their potential in clinical and experimental applications.
Resumo:
The scenario considered here is one where brain connectivity is represented as a network and an experimenter wishes to assess the evidence for an experimental effect at each of the typically thousands of connections comprising the network. To do this, a univariate model is independently fitted to each connection. It would be unwise to declare significance based on an uncorrected threshold of α=0.05, since the expected number of false positives for a network comprising N=90 nodes and N(N-1)/2=4005 connections would be 200. Control of Type I errors over all connections is therefore necessary. The network-based statistic (NBS) and spatial pairwise clustering (SPC) are two distinct methods that have been used to control family-wise errors when assessing the evidence for an experimental effect with mass univariate testing. The basic principle of the NBS and SPC is the same as supra-threshold voxel clustering. Unlike voxel clustering, where the definition of a voxel cluster is unambiguous, 'clusters' formed among supra-threshold connections can be defined in different ways. The NBS defines clusters using the graph theoretical concept of connected components. SPC on the other hand uses a more stringent pairwise clustering concept. The purpose of this article is to compare the pros and cons of the NBS and SPC, provide some guidelines on their practical use and demonstrate their utility using a case study involving neuroimaging data.
Resumo:
The physiological basis of human cerebral asymmetry for language remains mysterious. We have used simultaneous physiological and anatomical measurements to investigate the issue. Concentrating on neural oscillatory activity in speech-specific frequency bands and exploring interactions between gestural (motor) and auditory-evoked activity, we find, in the absence of language-related processing, that left auditory, somatosensory, articulatory motor, and inferior parietal cortices show specific, lateralized, speech-related physiological properties. With the addition of ecologically valid audiovisual stimulation, activity in auditory cortex synchronizes with left-dominant input from the motor cortex at frequencies corresponding to syllabic, but not phonemic, speech rhythms. Our results support theories of language lateralization that posit a major role for intrinsic, hardwired perceptuomotor processing in syllabic parsing and are compatible both with the evolutionary view that speech arose from a combination of syllable-sized vocalizations and meaningful hand gestures and with developmental observations suggesting phonemic analysis is a developmentally acquired process.
Resumo:
Functionally relevant large scale brain dynamics operates within the framework imposed by anatomical connectivity and time delays due to finite transmission speeds. To gain insight on the reliability and comparability of large scale brain network simulations, we investigate the effects of variations in the anatomical connectivity. Two different sets of detailed global connectivity structures are explored, the first extracted from the CoCoMac database and rescaled to the spatial extent of the human brain, the second derived from white-matter tractography applied to diffusion spectrum imaging (DSI) for a human subject. We use the combination of graph theoretical measures of the connection matrices and numerical simulations to explicate the importance of both connectivity strength and delays in shaping dynamic behaviour. Our results demonstrate that the brain dynamics derived from the CoCoMac database are more complex and biologically more realistic than the one based on the DSI database. We propose that the reason for this difference is the absence of directed weights in the DSI connectivity matrix.
Resumo:
Recent findings in neuroscience suggest that adult brain structure changes in response to environmental alterations and skill learning. Whereas much is known about structural changes after intensive practice for several months, little is known about the effects of single practice sessions on macroscopic brain structure and about progressive (dynamic) morphological alterations relative to improved task proficiency during learning for several weeks. Using T1-weighted and diffusion tensor imaging in humans, we demonstrate significant gray matter volume increases in frontal and parietal brain areas following only two sessions of practice in a complex whole-body balancing task. Gray matter volume increase in the prefrontal cortex correlated positively with subject's performance improvements during a 6 week learning period. Furthermore, we found that microstructural changes of fractional anisotropy in corresponding white matter regions followed the same temporal dynamic in relation to task performance. The results make clear how marginal alterations in our ever changing environment affect adult brain structure and elucidate the interrelated reorganization in cortical areas and associated fiber connections in correlation with improvements in task performance.
Resumo:
The high molecular weight and low concentration of brain glycogen render its noninvasive quantification challenging. Therefore, the precision increase of the quantification by localized (13) C MR at 9.4 to 14.1 T was investigated. Signal-to-noise ratio increased by 66%, slightly offset by a T(1) increase of 332 ± 15 to 521 ± 34 ms. Isotopic enrichment after long-term (13) C administration was comparable (≈ 40%) as was the nominal linewidth of glycogen C1 (≈ 50 Hz). Among the factors that contributed to the 66% observed increase in signal-to-noise ratio, the T(1) relaxation time impacted the effective signal-to-noise ratio by only 10% at a repetition time = 1 s. The signal-to-noise ratio increase together with the larger spectral dispersion at 14.1 T resulted in a better defined baseline, which allowed for more accurate fitting. Quantified glycogen concentrations were 5.8 ± 0.9 mM at 9.4 T and 6.0 ± 0.4 mM at 14.1 T; the decreased standard deviation demonstrates the compounded effect of increased magnetization and improved baseline on the precision of glycogen quantification.
Resumo:
Basal ganglia and brain stem nuclei are involved in the pathophysiology of various neurological and neuropsychiatric disorders. Currently available structural T1-weighted (T1w) magnetic resonance images do not provide sufficient contrast for reliable automated segmentation of various subcortical grey matter structures. We use a novel, semi-quantitative magnetization transfer (MT) imaging protocol that overcomes limitations in T1w images, which are mainly due to their sensitivity to the high iron content in subcortical grey matter. We demonstrate improved automated segmentation of putamen, pallidum, pulvinar and substantia nigra using MT images. A comparison with segmentation of high-quality T1w images was performed in 49 healthy subjects. Our results show that MT maps are highly suitable for automated segmentation, and so for multi-subject morphometric studies with a focus on subcortical structures.
Resumo:
The Brain Injury Quick Guide was developed as a resource tool for educators and school staff. Functional challenges (including social, physical, communication, and cognitive) are common following brain injury. This booklet serves as a resource outlining common challenges students may face in the classroom as well as strategies for addressing these challenges. Case studies outlining common challenges with possible strategies are provided with suggestions for IEP/504 plan accommodations. Basic brain anatomy and brain injury statistics are also reviewed.
Resumo:
Our understanding of how genotype determines phenotype in primary dystonia is limited. Familial young-onset primary dystonia is commonly due to the DYT1 gene mutation. A critical question, given the 30% penetrance of clinical symptoms in DYT1 mutation carriers, is why the same genotype leads to differential clinical expression and whether non-DYT1 adult-onset primary dystonia, with and without family history share pathophysiological mechanisms with DYT1 dystonia. This study examines the relationship between dystonic phenotype and the DYT1 gene mutation by monitoring whole-brain structure using voxel-based morphometry. We acquired magnetic resonance imaging data of symptomatic and asymptomatic DYT1 mutation carriers, of non-DYT1 primary dystonia patients, with and without family history and control subjects with normal DYT1 alleles. By crossing the factors genotype and phenotype we demonstrate a significant interaction in terms of brain anatomy confined to the basal ganglia bilaterally. The explanation for this effect differs according to both gene and dystonia status: non-DYT1 adult-onset dystonia patients and asymptomatic DYT1 carriers have significantly larger basal ganglia compared to healthy subjects and symptomatic DYT1 mutation carriers. There is a significant negative correlation between severity of dystonia and basal ganglia size in DYT1 mutation carriers. We propose that differential pathophysiological and compensatory mechanisms lead to brain structure changes in non-DYT1 primary adult-onset dystonias and DYT1 gene carriers. Given the range of age of onset, there may be differential genetic modulation of brain development that in turn determines clinical expression. Alternatively, a DYT1 gene dependent primary defect of motor circuit development may lead to stress-induced remodelling of the basal ganglia and hence dystonia.
Resumo:
This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.