994 resultados para Brain -- Effect of drugs on


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent past, there have been enormous efforts to understand effect of drugs on human body. Prior to understand the effect of drugs on human body most of the experiments are carried out on cells or model organisms. Here we present our study on the effect of chemotherapeutic drugs on cancer cells and the acetaminophen (APAP) induced hepatotoxicity in mouse model. Histone deacetylase inhibitors (HDIs) have attracted attention as potential drug molecules for the treatment of cancer. These are the chemotherapeutic drugs which have indirect mechanistic action against cancer cells via acting against histone deacetylases (HDAC). It has been known that different HDAC enzymes are over-expressed in various types of cancers for example; HDAC1 is over expressed in prostate, gastric and breast carcinomas. Therefore, in order to optimise chemotherapy, it is important to determine the efficacy of various classes of HDAC inhibitor drugs against variety of over-expressed HDAC enzymes. In the present study, FTIR microspectroscopy has been employed to predict the acetylation and propionylation brought in by HDIs. The liver plays an important role in cellular metabolism and is highly susceptible to drug toxicity. APAP which is an analgesic and antipyretic drug is extensively used for therapeutic purposes and has become the most common cause of acute liver failure (ALF). In the current study, we have focused to understand APAP induced hepatotoxicity using FTIR microspectroscopy. In the IR spectrum the bands corresponding to glycogen, ester group and were found to be suitable markers to predict liver injury at early time point (0.5hr) due to APAP both in tissue and serum in comparison to standard biochemical assays. Our studies show the potential of FTIR spectroscopy as a rapid, sensitive and non invasive detection technique for future clinical diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system and alterations in central GABAergic transmission may contribute to the symptoms of a number of neurological and psychiatric disorders. Because of this relationship, numerous laboratories are attempting to develop agents which will selectively enhance GABA neurotransmission in brain. Due to these efforts, several promising compounds have recently been discovered. Should these drugs prove to be clinically effective, they will be used to treat chronic neuropsychiatric disabilities and, therefore, will be administered for long periods of time. Accordingly, the present investigation was undertaken to determine the neurochemical consequences of chronic activation of brain GABA systems in order to better define the therapeutic potential and possible side-effect liability of GABAmimetic compounds.^ Chronic (15 day) administration to rats of low doses of amino-oxyacetic acid (AOAA, 10 mg/kg, once daily), isonicotinic acid hydrazide (20 mg/kg, b.i.d.), two non-specific inhibitors of GABA-T, the enzyme which catabolizes GABA in brain, or (gamma)-acetylenic GABA (10 mg/kg, b.i.d.) a catalytic inhibitor of this enzyme, resulted in a significant elevation of brain and CSF GABA content throughout the course of treatment. In addition, chronic administration of these drugs, as well as the direct acting GABA receptor agonists THIP (8 mg/kg, b.i.d.) or kojic amine (18 mg/kg, b.i.d.) resulted in a significant increase in dopamine receptor number and a significant decrease in GABA receptor number in the corpus striatum of treated animals as determined by standard in vitro receptor binding techniques. Changes in the GABA receptor were limited to the corpus striatum and occurred more rapidly than did alterations in the dopamine receptor. The finding that dopamine-mediated stereotypic behavior was enhanced in animals treated chronically with AOAA suggested that the receptor binding changes noted in vitro have some functional consequence in vitro.^ Coadministration of atropine (a muscarinic cholinergic receptor antagonist) blocked the GABA-T inhibitor-induced increase in striatal dopamine receptors but was without effect on receptor alterations seen following chronic administration of direct acting GABA receptor agonists. Atropine administration failed to influence the drug-induced decreases in striatal GABA receptors.^ Other findings included the discovery that synaptosomal high affinity ('3)H-choline uptake, an index of cholinergic neuronal activity, was significantly increased in the corpus striatum of animals treated acutely, but not chronically, with GABAmimetics.^ It is suggested that the dopamine receptor supersensitivity observed in the corpus striatum of animals following long-term treatment with GABAmimetics is a result of the chronic inhibition of the nigrostriatal dopamine system by these drugs. Changes in the GABA receptor, on the other hand, are more likely due to a homospecific regulation of these receptors. An hypothesis based on the different sites of action of GABA-T inhibitors vis-a-vis the direct acting GABA receptor agonists is proposed to account for the differential effect of atropine on the response to these drugs.^ The results of this investigation provide new insights into the functional interrelationships that exist in the basal ganglia and suggest that chronic treatment with GABAmimetics may produce extrapyramidal side-effects in man. In addition, the constellation of neurochemical changes observed following administration of these drugs may be a useful guide for determining the GABAmimetic properties of neuropharmacological agents. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Phospholipid content of brains of 3- or 8-week-old undernourished rats was 7--9% less than that for the corresponding control animals and this deficit could not be made up by rehabilitation. Phosphatidyl ethanolamine and plasmalogen were the components most affected in brains of undernourished rats. 2. Incorporation of 32P into phospholipids by brain homogenates was 28% higher in 3-week-old undernourished rats. It is suggested that enhanced phospholipid metabolism in undernourished animals may be related to behavioural alterations noted previously (Sobotka, Cook & Brodie, 1974). 3. Ganglioside concentrations in 3- and 8-week-old undernourished animals were 14% and 11.5% less respectively than those of the control animals and this difference could be made up by rehabilitation. [14C]Glucosamine incorporation in vivo into brain gangliosides was not affected by undernutrition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The blood-brain barrier (BBB) is a unique barrier that strictly regulates the entry of endogenous substrates and xenobiotics into the brain. This is due to its tight junctions and the array of transporters and metabolic enzymes that are expressed. The determination of brain concentrations in vivo is difficult, laborious and expensive which means that there is interest in developing predictive tools of brain distribution. Predicting brain concentrations is important even in early drug development to ensure efficacy of central nervous system (CNS) targeted drugs and safety of non-CNS drugs. The literature review covers the most common current in vitro, in vivo and in silico methods of studying transport into the brain, concentrating on transporter effects. The consequences of efflux mediated by p-glycoprotein, the most widely characterized transporter expressed at the BBB, is also discussed. The aim of the experimental study was to build a pharmacokinetic (PK) model to describe p-glycoprotein substrate drug concentrations in the brain using commonly measured in vivo parameters of brain distribution. The possibility of replacing in vivo parameter values with their in vitro counterparts was also studied. All data for the study was taken from the literature. A simple 2-compartment PK model was built using the Stella™ software. Brain concentrations of morphine, loperamide and quinidine were simulated and compared with published studies. Correlation of in vitro measured efflux ratio (ER) from different studies was evaluated in addition to studying correlation between in vitro and in vivo measured ER. A Stella™ model was also constructed to simulate an in vitro transcellular monolayer experiment, to study the sensitivity of measured ER to changes in passive permeability and Michaelis-Menten kinetic parameter values. Interspecies differences in rats and mice were investigated with regards to brain permeability and drug binding in brain tissue. Although the PK brain model was able to capture the concentration-time profiles for all 3 compounds in both brain and plasma and performed fairly well for morphine, for quinidine it underestimated and for loperamide it overestimated brain concentrations. Because the ratio of concentrations in brain and blood is dependent on the ER, it is suggested that the variable values cited for this parameter and its inaccuracy could be one explanation for the failure of predictions. Validation of the model with more compounds is needed to draw further conclusions. In vitro ER showed variable correlation between studies, indicating variability due to experimental factors such as test concentration, but overall differences were small. Good correlation between in vitro and in vivo ER at low concentrations supports the possibility of using of in vitro ER in the PK model. The in vitro simulation illustrated that in the simulation setting, efflux is significant only with low passive permeability, which highlights the fact that the cell model used to measure ER must have low enough paracellular permeability to correctly mimic the in vivo situation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The injurious effect of nonsteroidal anti-inflammatory drugs (NSAIDs) in the small intestine was not appreciated until the widespread use of capsule endoscopy. Animal studies found that NSAID-induced small intestinal injury depends on the ability of these drugs to be secreted into the bile. Because the individual toxicity of amphiphilic bile acids and NSAIDs directly correlates with their interactions with phospholipid membranes, we propose that the presence of both NSAIDs and bile acids alters their individual physicochemical properties and enhances the disruptive effect on cell membranes and overall cytotoxicity. We utilized in vitro gastric AGS and intestinal IEC-6 cells and found that combinations of bile acid, deoxycholic acid (DC), taurodeoxycholic acid, glycodeoxycholic acid, and the NSAID indomethacin (Indo) significantly increased cell plasma membrane permeability and became more cytotoxic than these agents alone. We confirmed this finding by measuring liposome permeability and intramembrane packing in synthetic model membranes exposed to DC, Indo, or combinations of both agents. By measuring physicochemical parameters, such as fluorescence resonance energy transfer and membrane surface charge, we found that Indo associated with phosphatidylcholine and promoted the molecular aggregation of DC and potential formation of larger and isolated bile acid complexes within either biomembranes or bile acid-lipid mixed micelles, which leads to membrane disruption. In this study, we demonstrated increased cytotoxicity of combinations of bile acid and NSAID and provided a molecular mechanism for the observed toxicity. This mechanism potentially contributes to the NSAID-induced injury in the small bowel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nicotine influences cognition and behavior, but the mechanisms by which these effects occur are unclear. By using positron emission tomography, we measured cognitive activation (increases in relative regional cerebral blood flow) during a working memory task [2-back task (2BT)] in 11 abstinent smokers and 11 ex-smokers. Assays were performed both after administration of placebo gum and 4-mg nicotine gum. Performance on the 2BT did not differ between groups in either condition, and the pattern of brain activation by the 2BT was consistent with reports in the literature. However, in the placebo condition, activation in ex-smokers predominated in the left hemisphere, whereas in smokers, it occurred in the right hemisphere. When nicotine was administered, activation was reduced in smokers but enhanced in ex-smokers. The lateralization of activation as a function of nicotine dependence suggests that chronic exposure to nicotine or withdrawal from nicotine affects cognitive strategies used to perform the memory task. Furthermore, the lack of enhancement of activation after nicotine administration in smokers likely reflects tolerance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Severe long-term alcohol misuse leads to localized brain damage that is prominent in superior frontal cortex but less so in other cortical areas e.g. primary motor. Alcohol dependence is also associated with several genetic markers. GABAA receptor expression differs selectively between alcoholics and controls in a manner that conforms to the pathology, whereas glutamate receptors are much less regionally variable in these subjects. We determined whether genotype differentiated the pharmacology of glutamate-NMDA receptors and the expression GABAA receptor subunits transcripts in a locally appropriate way so as to influence the severity of alcohol-induced brain damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer is common in men with very high mortality which is one of leading causes of cancer-related deaths in men. The main treatment approaches for metastasized prostate cancer are androgen deprivation and chemotherapeutic agents. Although there are initial responses to castration, the resistance to the treatment will eventually occur, leading to castration-resistant prostate cancer. The common chemotherapeutic agents for the treatment of prostate cancer are docetaxel and taxane but outcomes of using these drugs have not been satisfactory. Therefore, it is necessary to find better treatment approaches for prostate cancer and to search for compounds that are effective in prostate cancer prevention. Lycopene extracted from tomato and other fruits or plants such as Gac, watermelon, pink grapefruit, pink guava, red carrot and papaya has been shown to be effective on prostate cancer prevention and treatment. The advantage of the application of lycopene for its anti-prostate cancer activity is that lycopene can reach much higher concentration in prostate tissue than other tissues. In this review, the effect of lycopene on PI3K/Akt pathway is summarised, which could be one of major mechanisms for anti-cancer activity of lycopene.