976 resultados para Box-counting method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we have developed a method to compute fractal dimension (FD) of discrete time signals, in the time domain, by modifying the box-counting method. The size of the box is dependent on the sampling frequency of the signal. The number of boxes required to completely cover the signal are obtained at multiple time resolutions. The time resolutions are made coarse by decimating the signal. The loglog plot of total number of boxes required to cover the curve versus size of the box used appears to be a straight line, whose slope is taken as an estimate of FD of the signal. The results are provided to demonstrate the performance of the proposed method using parametric fractal signals. The estimation accuracy of the method is compared with that of Katz, Sevcik, and Higuchi methods. In ddition, some properties of the FD are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arrhythmia is one kind of cardiovascular diseases that give rise to the number of deaths and potentially yields immedicable danger. Arrhythmia is a life threatening condition originating from disorganized propagation of electrical signals in heart resulting in desynchronization among different chambers of the heart. Fundamentally, the synchronization process means that the phase relationship of electrical activities between the chambers remains coherent, maintaining a constant phase difference over time. If desynchronization occurs due to arrhythmia, the coherent phase relationship breaks down resulting in chaotic rhythm affecting the regular pumping mechanism of heart. This phenomenon was explored by using the phase space reconstruction technique which is a standard analysis technique of time series data generated from nonlinear dynamical system. In this project a novel index is presented for predicting the onset of ventricular arrhythmias. Analysis of continuously captured long-term ECG data recordings was conducted up to the onset of arrhythmia by the phase space reconstruction method, obtaining 2-dimensional images, analysed by the box counting method. The method was tested using the ECG data set of three different kinds including normal (NR), Ventricular Tachycardia (VT), Ventricular Fibrillation (VF), extracted from the Physionet ECG database. Statistical measures like mean (μ), standard deviation (σ) and coefficient of variation (σ/μ) for the box-counting in phase space diagrams are derived for a sliding window of 10 beats of ECG signal. From the results of these statistical analyses, a threshold was derived as an upper bound of Coefficient of Variation (CV) for box-counting of ECG phase portraits which is capable of reliably predicting the impeding arrhythmia long before its actual occurrence. As future work of research, it was planned to validate this prediction tool over a wider population of patients affected by different kind of arrhythmia, like atrial fibrillation, bundle and brunch block, and set different thresholds for them, in order to confirm its clinical applicability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximate Box Relaxation method was used t'o simulate a plasma jet flow impinging on a flatplate at atmospheric pressure, to achieve a better understanding of the characteristics of plasma jet in materials surface treating. The flow fields under different conditions were simulated and analyzed. The distributions of temperature, velocity and pressure were obtained by modelling. Computed results indicate that this numerical method is suitable for simulation of the flow characteristics of plasma jet: and is helpful for understanding of the mechanism of the plasma-material processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damage not only degrades the mechanical properties of explosives, but also influences the shock sensitivity, combustion and even detonation behavior of explosives. The study of impact damage is crucial in the vulnerability evaluation of explosives. A long-pulse low-velocity gas gun with a gas buffer was developed and used to induce impact damage in a hot pressed plastic bonded explosive. Various methods were used to detect and characterize the impact damage of the explosive. The microstructure was examined by use of polarized light microscopy. Fractal analysis of the micrographs was conducted by use of box counting method. The correlation between the fractal dimensions and microstructures was analyzed. Ultrasonic testing was conducted using a pulse through-transmission method to obtain the ultrasonic velocity and ultrasonic attenuation. Spectra analyses were carried out for recorded ultrasonic signals using fast Fourier transform. The correlations between the impact damage and ultrasonic parameters including ultrasonic velocities and attenuation coefficients were also analyzed. To quantitatively assess the impact induced explosive crystal fractures, particle size distribution analyses of explosive crystals were conducted by using a thorough etching technique, in which the explosives samples were soaked in a solution for enough time that the binder was totally removed. Impact induces a large extent of explosive crystal fractures and a large number of microcracks. The ultrasonic velocity decreases and attenuation coefficients increase with the presence of impact damage. Both ultrasonic parameters and fractal dimension can be used to quantitatively assess the impact damage of plastic bonded explosives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The branched crystal morphology of linear polyethylene formed at various temperatures from thin films has been studied by atomic-force microscopy (AFM), transmission electron microscopy (TEM), electron diffraction (ED) pattern and polymer decoration technique. Two types of branched patterns, i.e. dendrite and seaweed patterns, have been visualized. The fractal dimension d(f) = 1.65 of both dendrite and some of seaweed patterns was obtained by using the box-counting method, although most of the seaweed patterns are compact. Selected-area ED patterns indicate that the fold stems tilt about 34.5degrees around the b-axis and polymer decoration patterns show that the chain folding direction and regularity in two (200). regions are quite different from each other. Because of chain tilting, branched crystals show three striking features: 1) the lamella-like branches show two (200) regions with different thickness; 2) the crystals usually bend towards the thin region; 3) the thick region grows faster by developing branches, thus branches usually occur outside the thick region. The branched patterns show a characteristic width w, which gives a linear relationship with the crystallization temperature on a semilogarithmic plot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure–volume curves and the pseudophaseplane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure-volume curves and the pseudophase-plane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducción: La geometría fractal permite la descripción objetiva de objetos irregulares tales como las estructuras del cuerpo humano: Por ello, en este caso, se aplicó al desarrollo de una nueva metodología de caracterización de la cavidad cardiotorácica.Material y métodos: Estudio exploratorio descriptivo en el que se desarrolló una metodología de medición basada en la geometría fractal aplicada a 14 radiografías de tórax de sujetos con diferentes patologías. Se calcularon las dimensiones fractales de la cavidad torácica, la silueta cardíaca y la superposición de estas partes con el método de Box-Counting.Resultados: Se obtuvieron nuevas medidas morfométricas objetivas y reproducibles de placas de tórax a partir de dimensiones fractales.Conclusiones: La geometría fractal permite la caracterización matemática de placas de tórax de pacientes con diferentes patologías. Es posible que el desarrollo de esta metodología en posteriores investigaciones permita generar parámetros útiles de aplicación clínica, independientes de la experiencia del médico y de su observación subjetiva, de modo que garantice la reproducibilidad y objetividad de las medidas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducción. La geometría fractal ha mostrado ser adecuada en la descripción matemática de objetos irregulares; esta medida se ha denominado dimensión fractal. La aplicación del análisis fractal para medir los contornos de las células normales así como aquellas que presentan algún tipo de anormalidad, ha mostrado la posibilidad de caracterización matemática de su irregularidad. Objetivos. Medir, a partir de la geometría fractal células del epitelio escamoso de cuello uterino clasificadas como normales, atipias escamosas de significado indeterminado (ASC-US) y lesiones intraepiteliales escamosas de bajo grado (LEIBG), diagnosticadas mediante observación microscópica, en busca de mediciones matemáticas que las distingan. Metodología. Este es un estudio exploratorio descriptivo en el que se calcularon las dimensiones fractales, con el método de box counting simplificado y convencional, de los contornos celular y nuclear de 13 células del epitelio escamoso de cuello uterino normales y con anormalidades como ASC-US y lesiones intraepiteliales de bajo grado (LEI BG), a partir de fotografías digitales de 7 células normales, 2 ASCUS y 4 LEI BG diagnosticadas con criterios citomorfológicos mediante observación microscópica convencional. Resultados. Se desarrolló una medida cuantitativa, objetiva y reproducible del grado de irregularidad en las células del epitelio escamoso de cuello uterino identificadas microscópicamente como normales, ASC-US y LEI BG. Conclusiones Se evidenció una organización fractal en la arquitectura celular normal, así como en células ASC-US y las lesiones intraepiteliales de bajo grado (LEI BG). No se encontraron diferencias entre los tipos celulares estudiados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUÇÃO: O termo fractal é derivado do latim fractus, que significa irregular ou quebrado, considerando a estrutura observada como tendo uma dimensão não-inteira. Há muitos estudos que empregaram a Dimensão Fractal (DF) como uma ferramenta de diagnóstico. Um dos métodos mais comuns para o seu estudo é a Box-plot counting (Método de contagem de caixas). OBJETIVO: O objetivo do estudo foi tentar estabelecer a contribuição da DF na quantificação da rejeição celular miocárdica após o transplante cardíaco. MÉTODOS: Imagens microscópicas digitalizadas foram capturadas na resolução 800x600 (aumento de 100x). A DF foi calculada com auxílio do software ImageJ, com adaptações. A classificação dos graus de rejeição foi de acordo com a Sociedade Internacional de Transplante Cardíaco e Pulmonar (ISHLT 2004). O relatório final do grau de rejeição foi confirmado e redefinido após exaustiva revisão das lâminas por um patologista experiente externo. No total, 658 lâminas foram avaliadas, com a seguinte distribuição entre os graus de rejeição (R): 335 (0R), 214 (1R), 70 (2R), 39 (3R). Os dados foram analisados estatisticamente com os testes Kruskal-Wallis e curvas ROC sendo considerados significantes valores de P < 0,05. RESULTADOS: Houve diferença estatística significativa entre os diferentes graus de rejeição com exceção da 3R versus 2R. A mesma tendência foi observada na aplicação da curva ROC. CONCLUSÃO: ADF pode contribuir para a avaliação da rejeição celular do miocárdio. Os valores mais elevados estiveram diretamente associados com graus progressivamente maiores de rejeição. Isso pode ajudar na tomada de decisão em casos duvidosos e naqueles que possam necessitar de intensificação da medicação imunossupressora.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the increased incidence of skin cancer, computational methods based on intelligent approaches have been developed to aid dermatologists in the diagnosis of skin lesions. This paper proposes a method to classify texture in images, since it is an important feature for the successfully identification of skin lesions. For this is defined a feature vector, with the fractal dimension of images through the box-counting method (BCM), which is used with a SVM to classify the texture of the lesions in to non-irregular or irregular. With the proposed solution, we could obtain an accuracy of 72.84%. © 2012 AISTI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG