904 resultados para Box-Jenkins forecasting
Resumo:
Dissertação para obtenção do Grau de Mestre em Contabilidade e Finanças Orientadora: Professora Doutora Patrícia Ramos
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Incluye Bibliografía
Resumo:
O Município de Marabá- PA, situado na região Amazônica, sudeste do Estado do Pará, sofre anualmente com eventos de enchentes, ocasionados pelo aumento periódico do rio Tocantins e pela situação de vulnerabilidade da população que reside em áreas de risco. A defesa civil estadual e municipal anualmente planeja e prepara equipes para ações de defesa no município. Nesta fase o monitoramento e previsão de eventos de enchentes são importantes. Portanto, com o objetivo de diminuir erros nas previsões hidrológicas para o Município de Marabá, desenvolveu-se um modelo estocástico para previsão de nível do rio Tocantins, baseado na metodologia de Box e Jenkins. Utilizou os dados de níveis diários observados nas estações hidrológicas de Marabá e Carolina e Conceição do Araguaia da Agência Nacional de Águas (ANA), do período de 01/12/ 2008 a 31/03/2011. Efetuou-se o ajustamento de três modelos (Mt, Nt e Yt), através de diferentes aplicativos estatísticos: o SAS e o Gretl, usando diferentes interpretações do comportamento das séries para gerar as equações dos modelos. A principal diferença entre os aplicativos é que no SAS usa o modelo de função de transferência na modelagem. Realizou-se uma classificação da variabilidade do nível do rio, através da técnica dos Quantis para o período de 1972 a 2011, examinando-se apenas as categorizações de níveis ACIMA e MUITO ACIMA do normal. Para análise de impactos socioeconômicos foram usados os dados das ações da Defesa Civil Estado do Pará nas cheias de 2009 e 2011. Os resultados mostraram que o número de eventos de cheias com níveis MUITO ACIMA do normal, geralmente, podem estar associados a eventos de La Niña. Outro resultado importante: os modelos gerados simularam muito bem o nível do rio para o período de sete dias (01/04/2011 a 07/04/2011). O modelo multivariado Nt (com pequenos erros) representou o comportamento da série original, subestimando os valores reais nos dias 3, 4 e 5 de abril de 2011, com erro máximo de 0,28 no dia 4. O modelo univariado (Yt) teve bons resultados nas simulações com erros absolutos em torno de 0,12 m. O modelo com menor erro absoluto (0,08m) para o mesmo período foi o modelo Mt, desenvolvido pelo aplicativo SAS, que interpreta a série original como sendo não linear e não estacionária. A análise quantitativa dos impactos fluviométricos, ocorridos nas enchentes de 2009 e 2011 na cidade de Marabá, revelou em média que mais de 4 mil famílias sofrem com estes eventos, implicado em gastos financeiros elevados. Logo, conclui-se que os modelos de previsão de níveis são importantes ferramentas que a Defesa Civil, utiliza no planejamento e preparo de ações preventivas para o município de Marabá.
Resumo:
The national truck fleet has expanded strongly in recent decades. However, due to fluctuations in the demand that the market is exposed, it needed up making more effective strategic decisions of automakers. These decisions are made after an evaluation of guaranteed sales forecasts. This work aims to generate an annual forecast of truck production by Box and Jenkins methodology. They used annual data for referring forecast modeling from the year 1957 to 2014, which were obtained by the National Association of Motor Vehicle Manufacturers (Anfavea). The model used was Autoregressive Integrated Moving Average (ARIMA) and can choose the best model for the series under study, and the ARIMA (2,1,3) as representative for conducting truck production forecast
Resumo:
The national truck fleet has expanded strongly in recent decades. However, due to fluctuations in the demand that the market is exposed, it needed up making more effective strategic decisions of automakers. These decisions are made after an evaluation of guaranteed sales forecasts. This work aims to generate an annual forecast of truck production by Box and Jenkins methodology. They used annual data for referring forecast modeling from the year 1957 to 2014, which were obtained by the National Association of Motor Vehicle Manufacturers (Anfavea). The model used was Autoregressive Integrated Moving Average (ARIMA) and can choose the best model for the series under study, and the ARIMA (2,1,3) as representative for conducting truck production forecast
Resumo:
INTRODUCTION: Forecasting dengue cases in a population by using time-series models can provide useful information that can be used to facilitate the planning of public health interventions. The objective of this article was to develop a forecasting model for dengue incidence in Campinas, southeast Brazil, considering the Box-Jenkins modeling approach. METHODS: The forecasting model for dengue incidence was performed with R software using the seasonal autoregressive integrated moving average (SARIMA) model. We fitted a model based on the reported monthly incidence of dengue from 1998 to 2008, and we validated the model using the data collected between January and December of 2009. RESULTS: SARIMA (2,1,2) (1,1,1)12 was the model with the best fit for data. This model indicated that the number of dengue cases in a given month can be estimated by the number of dengue cases occurring one, two and twelve months prior. The predicted values for 2009 are relatively close to the observed values. CONCLUSIONS: The results of this article indicate that SARIMA models are useful tools for monitoring dengue incidence. We also observe that the SARIMA model is capable of representing with relative precision the number of cases in a next year.
Resumo:
Ghana faces a macroeconomic problem of inflation for a long period of time. The problem in somehow slows the economic growth in this country. As we all know, inflation is one of the major economic challenges facing most countries in the world especially those in African including Ghana. Therefore, forecasting inflation rates in Ghana becomes very important for its government to design economic strategies or effective monetary policies to combat any unexpected high inflation in this country. This paper studies seasonal autoregressive integrated moving average model to forecast inflation rates in Ghana. Using monthly inflation data from July 1991 to December 2009, we find that ARIMA (1,1,1)(0,0,1)12 can represent the data behavior of inflation rate in Ghana well. Based on the selected model, we forecast seven (7) months inflation rates of Ghana outside the sample period (i.e. from January 2010 to July 2010). The observed inflation rate from January to April which was published by Ghana Statistical Service Department fall within the 95% confidence interval obtained from the designed model. The forecasted results show a decreasing pattern and a turning point of Ghana inflation in the month of July.
Resumo:
Tässä diplomityössä tutkittiin kysynnän ennustamista Vaasan & Vaasan Oy:n tuotteille. Ensin työssä perehdyttiin ennustamiseen ja sen tarjoamiin mahdollisuuksiin yrityksessä. Erityisesti kysynnän ennustamisesta saatavat hyödyt käytiin läpi. Kysynnän ennustamisesta haettiin ratkaisua erityisesti ongelmiin työvuorosuunnittelussa.Työssä perehdyttiin ennustemenetelmiin liittyvään kirjallisuuteen, jonka oppien perusteella tehtiin koe-ennustuksia yrityksen kysynnän historiadatan avulla. Koe-ennustuksia tehtiin kuudelle eri Turun leipomon koe-tuotteelle. Ennustettavana aikavälinä oli kahden viikon päiväkohtainen kysyntä. Tämän aikavälin erityisesti peruskysynnälle etsittiin ennustetarkkuudeltaan parasta kvantitatiivista ennustemenetelmää. Koe-ennustuksia tehtiin liukuvilla keskiarvoilla, klassisella aikasarja-analyysillä, eksponentiaalisen tasoituksen menetelmällä, Holtin lineaarisella eksponenttitasoituksen menetelmällä, Wintersin kausittaisella eksponentiaalisella tasoituksella, autoregressiivisillä malleilla, Box-Jenkinsin menetelmällä ja regressioanalyysillä. Myös neuroverkon opettamista historiadatalla ja käyttämistä ongelman ratkaisun apuna kokeiltiin.Koe-ennustuksien tulosten perusteella ennustemenetelmien toimintaa analysoitiin jatkokehitystä varten. Ennustetarkkuuden lisäksi arvioitiin mallin yksinkertaisuutta, helppokäyttöisyyttä ja sopivuutta yrityksen monien tuotteiden ennustamiseen. Myös kausivaihteluihin, trendeihin ja erikoispäiviin kiinnitettiin huomiota. Ennustetarkkuuden huomattiin parantuvan selvästi peruskysyntää ennustettaessa, jos ensin historiadata esikäsittelemällä puhdistettiin erikoispäivistä ja –viikoista.
Resumo:
A identificação antecipada do comportamento da demanda de veículos novos na extremidade da rede de distribuição é imprescindível para implementação de um sistema de produção puxada pela demanda. Previsões confiáveis, obtidas nas concessionárias, conferem aos fabricantes maior sensibilidade diante das peculariedades locais da demanda e reduzem as incertezas da produção em larga escala. A obtenção de previsões consistentes requer, porém, o emprego de métodos formais. Os profissionais responsáveis pela elaboração de previsões nas concessionárias desconhecem, em grande parte, os métodos de forecasting abordados na literatura. Essa dissertação visa o desenvolvimento de um sistema formal para elaboração de previsões de demanda de veículos novos em concessionárias. Em estudo de caso, conduzido em uma concessionária da marca Volkswagen, modelos estatísticos de Box-Jenkins e de suavização exponencial são aplicados para gerar previsões quantitativas das vendas de veículos novos. Previsões qualitativas, correspondentes ao julgamento de especialistas no segmento, são formalizadas através do método Delphi. Finalmente, as previsões quantitativas e qualitativas são combinadas matematicamente e comparadas. Tal comparação demonstra que as vantagens inerentes a cada método podem ser absorvidas para proporcionar previsões mais acuradas.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
OBJECTIVE: To determine health care costs and economic burden of epidemiological changes in diseases related to tobacco consumption. METHODS: A time-series analysis in Mexico (1994-2005) was carried out on seven health interventions: chronic obstructive pulmonary diseases, lung cancer with and without surgical intervention, asthma in smokers and non-smokers, full treatment course with nicotine gum, and full treatment course with nicotine patch. According with Box-Jenkins methodology, probabilistic models were developed to forecast the expected changes in the epidemiologic profile and the expected changes in health care services required for selected interventions. Health care costs were estimated following the instrumentation methods and validated with consensus technique. RESULTS: A comparison of the economic impact in 2006 vs. 2008 showed 20-90% increase in expected cases depending on the disease (p<0.05), and 25-93% increase in financial requirements (p<0.01). The study data suggest that changes in the demand for health services for patients with respiratory diseases related to tobacco consumption will continue showing an increasing trend. CONCLUSIONS: In economic terms, the growing number of cases expected during the study period indicates a process of internal competition and adds an element of intrinsic competition in the management of preventive and curative interventions. The study results support the assumption that if preventive programs remain unchanged, the increasing demands for curative health care may cause great financial and management challenges to the health care system of middle-income countries like Mexico.
Resumo:
Na sociedade actual, é cada vez mais difícil desassociar o ambiente financeiro do ambiente social, tendo o primeiro influência directa ou indirecta em praticamente todos os aspectos da sociedade. A esta influência está associada a vasta quantidade de informação e serviços financeiros que possibilitam uma melhor compreensão do ambiente socioeconómico actual, permitindo também o estudo das evoluções e das dinâmicas dos mercados financeiros. Este trabalho refere-se ao estudo e comparação de algumas ferramentas disponíveis para a análise dinâmica e tentativa de previsão de alguns índices de bolsa escolhidos. Tais métodos a estudar são modelos clássicos como o Autoregressivo, Média Móvel e o Modelo Misto apresentado por Box e Jenkins. São também propostos dois métodos que tentam distanciar-se dos métodos tradicionais por apenas considerarem para a sua previsão os momentos semelhantes ao momento actual que se tenta prever, ao invés de considerar todo o espectro dos dados disponíveis, tal como os métodos clássicos referidos anteriormente.
Resumo:
A capacidade de prever precisamente a produção de energia renovável é extremamente relevante tanto do ponto de vista económico como para controlo da estabilidade da rede elétrica. Para tal, é necessário realizar uma previsão das condições meteorológicas adjacentes à produção de energia a partir de fontes de energia renovável. Vários modelos de previsão têm sido utilizados para este fim, desde modelos atmosféricos a modelos estatísticos, onde se destacam métodos como Redes Neuronais Artificiais ou a Metodologia de Box & Jenkins. Lidar com dados meteo-rológicos pode revelar algumas complicações devido à possível instabilidade das medições, com-plicando o desenvolvimento de um modelo de previsão adequado. Neste trabalho pretende-se realizar a previsão de produção a partir de uma instalação fotovoltaica e um gerador eólico através do uso da Metodologia de Box & Jenkins para desenvolver um modelo capaz de realizar a previsão das condições meteorológicas para diferentes horizontes temporais medidos no topo do edifício do Departamento de Engenharia Eletrotécnica (DEE) da Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), e usando esses valores para calcular a produção de energia. Os resultados obtidos revelaram um bom desempenho quando comparados os resultados previstos com os resultados reais para o mesmo período de tempo, garantindo que podem ser utilizados para calcular a previsão de potência produzida através das instalações presentes no local e encorajando novos estudos no tema.