942 resultados para Bovine tuberculosis
Resumo:
1. We examine whether various measures of herbivore current physiological state (age, breeding and immune status) and genetic potential can be used as indicators of exposure to and risk from disease. We use dairy cattle and the risks of tuberculosis (TB) transmission posed to them by pasture contaminated with badger excreta (via the fecal-oral route) as a model system to address our aim.
Resumo:
Livestock face complex foraging options associated with optimizing nutrient intake while being able to avoid areas posing risk of parasites or disease. Areas of tall nutrient-rich swards around fecal deposits may be attractive for grazing, but might incur fitness costs from parasites. We use the example of dairy cattle and the risks of tuberculosis transmission posed to them by pastures contaminated with badger excreta to examine this trade-off. A risk may be posed either by aerosolized inhalation through investigation or by ingestion via grazing contaminated swards. We quantified the levels of investigation and grazing of 150 dairy cows at badger latrines (accumulations of feces and urine) and crossing points (urination-only sites). Grazing behavior was compared between strip-grazed and rotation-grazed fields. Strip grazing had fields subdivided for grazing periods of
Resumo:
Tuberculosis (TB) caused by Mycobacterium bovis is a re-emerging disease of livestock that is of major economic importance worldwide, as well as being a zoonotic risk there is significant heritability for host resistance to bovine TB (bTB) in dairy cattle. To identify resistance loci for bTB, we undertook a genome-wide association study in female Holstein-Friesian cattle with 592 cases and 559 age-matched controls from case herds. Cases and controls were categorised into distinct phenotypes: skin test and lesion positive vs skin test negative on multiple occasions, respectively these animals were genotyped with the Illumina BovineHD 700K BeadChip. Genome-wide rapid association using linear and logistic mixed models and regression (GRAMMAR), regional heritability mapping (RHM) and haplotype-sharing analysis identified two novel resistance loci that attained chromosome-wise significance, protein tyrosine phosphatase receptor T (PTPRT; P=4.8 × 10 -7) and myosin IIIB (MYO3B; P=5.4 × 10 -6). We estimated that 21% of the phenotypic variance in TB resistance could be explained by all of the informative single-nucleotide polymorphisms, of which the region encompassing the PTPRT gene accounted for 6.2% of the variance and a further 3.6% was associated with a putative copy number variant in MYO3B the results from this study add to our understanding of variation in host control of infection and suggest that genetic marker-based selection for resistance to bTB has the potential to make a significant contribution to bTB control.
Resumo:
Bovine TB (bTB) is endemic in Irish cattle and has eluded eradication despite considerable expenditure, amid debate over the relative roles of badgers and cattle in disease transmission. Using a comprehensive dataset from Northern Ireland (>10,000 km2; 29,513 cattle herds), we investigated interactions between host populations in one of the first large-scale risk factor analyses for new herd breakdowns to combine data on both species. Cattle risk factors (movements, international imports, bTB history, neighbours with bTB) were more strongly associated with herd risk than area-level measures of badger social group density, habitat suitability or persecution (sett disturbance). Highest risks were in areas of high badger social group density and high rates of persecution, potentially representing both responsive persecution of badgers in high cattle risk areas and effects of persecution on cattle bTB risk through badger social group disruption. Average badger persecution was associated with reduced cattle bTB risk (compared with high persecution areas), so persecution may contribute towards sustaining bTB hotspots; findings with important implications for existing and planned disease control programmes.
Resumo:
Mycobacterium bovis is the causal agent of bovine tuberculosis, one of the most important diseases currently facing the UK cattle industry. Here, we use high-density whole genome sequencing (WGS) in a defined sub-population of M. bovis in 145 cattle across 66 herd breakdowns to gain insights into local spread and persistence. We show that despite low divergence among isolates, WGS can in principle expose contributions of under-sampled host populations to M. bovis transmission. However, we demonstrate that in our data such a signal is due to molecular type switching, which had been previously undocumented for M. bovis. Isolates from farms with a known history of direct cattle movement between them did not show a statistical signal of higher genetic similarity. Despite an overall signal of genetic isolation by distance, genetic distances also showed no apparent relationship with spatial distance among affected farms over distances <5 km. Using simulations, we find that even over the brief evolutionary timescale covered by our data, Bayesian phylogeographic approaches are feasible. Applying such approaches showed that M. bovis dispersal in this system is heterogeneous but slow overall, averaging 2 km/year. These results confirm that widespread application of WGS to M. bovis will bring novel and important insights into the dynamics of M. bovis spread and persistence, but that the current questions most pertinent to control will be best addressed using approaches that more directly integrate WGS with additional epidemiological data.
Resumo:
Sixty cattle farmers in England were questioned about the costs associated with premovement testing for bovine tuberculosis (TB). On average, the farmers had premovement tested 2-45 times in the previous 12 months, but the majority had tested only once. An average of 28.6 animals were tested on each occasion, but there were wide variations. The average farm labour costs were (sic)4.00 per animal tested, veterinary costs were (sic)4.33 and other costs were (sic)0.51, giving a total cost of (sic)8.84, but there were wide variations between farms, and many incurred costs of more than (sic)20 per animal. A majority of the farmers also cited disruption to the farm business or missed market opportunities as costs, but few could estimate their financial cost. Most of the farmers thought that premovement testing was a cost burden on their business, and over half thought It was not an effective policy to control bovine TB.
Resumo:
Break-even analyses of the costs and benefits of six alternative bovine tuberculosis (bTB) control strategies were undertaken. The results show that some strategies, such as zoning, would require relatively small reductions in bTB incidence as a result to be cost effective, whilst for others, such as proactive badger removal, the costs would require a substantial and relatively rapid reduction in bTB incidence to be worthwhile.
Resumo:
Bovine tuberculosis (TB) is an important economic problem. The incidence of TB in cattle herds has steadily risen in the UK, and badgers are strongly implicated in spreading disease. Since the mid-1970s the UK government has adopted a number of badger culling strategies to attempt to reduce infection in cattle. In this report, an established model has been used to simulate TB in badgers, transmission to cattle, and control by badger culling. Costs were supplied by the UK Government's Department for Environment Food and Rural Affairs (Defra) for badger trapping and gassing. Regardless of culling intensity or area simulated, an overall reduction in the herd breakdown rate was seen. With a high culling efficacy and no social perturbation, the mean Net Present Value of a few simulated culling strategies in an "ideal world" was positive, meaning the economic benefits outweighed the costs. Further work is required before these results could be considered definitive, as it is necessary to evaluate uncertainties and simulate less than perfect conditions. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A brief history of bovine tuberculosis (bTB) and its control in Great Britain is presented. Numerous diverse policies to control the disease in man, cattle and wildlife have been pursued over the last 100 years and many millions of pounds have been spent. After notable success in reducing the incidence and prevalence of bTB in cattle in GB from the 1950s to the mid-1980s, the number of cattle slaughtered has increased with increased geographical spread continually since that time with a high point of bTB incidence in 2008. This increase appeared to coincide with changing policy regarding the control of the disease in badgers with a more humane approach adopted and with strengthened protection for badgers through legislation. Indeed, much controversy has been involved in the debate on the role of badgers in disease transmission to cattle and the need for their control as vectors of the disease with various commissioned research projects, trials, public consultations and media attention. The findings of two social science investigations presented as examples showed that citizens generally believed that bTB in cattle is an important issue that needs to be tackled but objected to badgers being killed, whilst cattle farmers were willing to pay around £17/animal/year for a bTB cattle vaccine. It is noted that successes regarding the control of bTB in other countries have combined both cattle and wildlife controls and had strong involvement from industry working with government.
Resumo:
Bovine tuberculosis, caused by infection with Mycobacterium bovis, is a re-emerging zoonotic disease. It has staged a comeback by establishing infections in wildlife and cattle, creating the potential for human disease in locations where it was thought to be under control. In northwestern Minnesota, infected cattle and white-tailed deer were first discovered in 2005. A major bovine tuberculosis eradication campaign is underway in the state, with multiple efforts employed to control M. bovis infection in both cattle and deer populations. In order to effectively eradicate bovine tuberculosis in Minnesota, there is a need for better understanding of the factors that increase the risk of deer and cattle interacting in a way that facilitates tuberculosis transmission. By reducing the risk of disease transmission within the animal populations, we will also reduce the risk that bovine tuberculosis will again become a common disease in human populations. The purpose of this study is to characterize the risk of interactions between cattle and white-tailed deer in northern Minnesota in order to prevent M. bovis transmission. A survey originally developed to assess deer-cattle interactions in Michigan was modified for use in Minnesota, introducing a scoring method to evaluate the areas of highest priority at risk of potential deer-cattle interaction. The resulting semi-quantitative deer-cattle interaction risk assessment was used at 53 cattle herds located in the region adjacent to the bovine tuberculosis “Core Area”. Two evaluators each scored the farm separately, and then created a management plan for the farm that prioritized the areas of greatest risk for deer-cattle interactions. Herds located within the “Management Zone” were evaluated by Minnesota Board of Animal Health staff, and results from these surveys were used as a point of comparison.
Resumo:
In 1975, a wild white-tailed deer infected with bovine tuberculosis was shot in the northeastern Lower Peninsula, Michigan. The shooting of a second infected deer in the same area in 1994 triggered ongoing disease surveillance in the region. By 2002, bovine tuberculosis had been confirmed in 12 Michigan counties: from 449 deer; two elk; 41 non-cervid wildlife; one captive cervid facility and 28 cattle herds. We analyzed geographic spread of disease since the surveillance began and investigated factors influencing the prevalence of disease within the infected area. These analyses reveal that 78 percent of tuberculous deer came from within a 1560 km2 'core' area, within which the prevalence of apparent disease averaged 2.5 percent. Prevalence declined dramatically outside of the core and was an order of magnitude lower 30 km from its boundary. This prevalence gradient was highly significant (P<0.0001) and did not alter over the 6 year surveillance period (P= 0.98). Within the core, deer density and supplemental feeding by hunters were positively and independently correlated with tuberculosis prevalence in deer. Together, these two factors explained 55 percent of the variation in prevalence. We conclude that bovine tuberculosis was already well established in the deer population in 1994, that the infected area has not expanded significantly since that time, and that deer over-abundance and food supplementation have both contributed to ongoing transmission of disease. Managers are currently enforcing prohibitions on deer feeding in the core and are working to lower deer numbers there through increased hunting pressure.
Resumo:
Bovine tuberculosis (Mycobacterium bovis) was discovered in northern Michigan white-tailed deer (Odocoileus virginianus) in 1994, and has been known to exist in Michigan cattle herds since 1998. Despite efforts to eradicate the disease in cattle, infection and re-infection of farms continues to occur, suggesting transmission among cattle, deer, or other wildlife reservoirs. The goals of this study were to document wildlife activity on farms and evaluate the possible role wildlife play in the ecology of bovine tuberculosis (TB) in Michigan. Visual observations were conducted on farms in a 5-county area of northern Michigan to document direct wildlife-cattle interactions (i.e., <5 m between individuals) and indirect interactions (e.g., wildlife visitations to food stores and areas accessible to cattle). Observations were conducted primarily during evening and early morning hours between January and August, 2002, and on a 24-hour schedule between January and August, 2003. Total observation time accumulated through the duration of the study was 1,780 hours. Results indicated that direct interaction between deer and cattle was a rare event; no direct interactions were observed during the first year, and only one direct interaction was observed during the second year. However, through the duration of the study 21 direct interactions were documented between cattle and turkey, and 11 direct interactions were documented between cattle and mammals other than deer. In total, 273 indirect interactions by deer, 112 indirect interactions by turkeys, and 248 indirect interactions by mammals other than deer were observed during the 2 field seasons combined. These data supported the hypothesis that indirect interactions among wildlife and cattle are a potential mechanism for the transmission of TB in Michigan. If direct interactions were important mechanisms of TB transmission to cattle in northern Michigan, my data suggested that feral cats were the species of most concern, even though there were more observations between turkey and cattle. Unlike cats, which can become infected with and transmit TB, there is no evidence for such pathogenesis in turkey.
Resumo:
The mainstay of tuberculosis diagnosis in cattle and deer has been the tuberculin skin test. Recent advances have allowed the incorporation of blood based assays to the diagnostic arsenal for both cattle and deer. Use of defined and specific antigens has allowed for improved specificity of cell mediated assays in both cattle and deer and advances in antibody tests for tuberculosis have potential for use in free-ranging and captive cervid populations. Combined use of blood-based assays with skin testing will require further understanding of the effect of skin testing on the accuracy of blood based assays. Models of experimental infection of cattle have allowed for increased understanding of natural disease pathogenesis. Differences likely exist; however, between cattle and deer in both disease distribution and primary route of inoculation in naturally infected animals.
Resumo:
Bovine tuberculosis (BTB) was introduced into Swedish farmed deer herds in 1987. Epidemiological investigations showed that 10 deer herds had become infected (July 1994) and a common source of infection, a consignment of 168 imported farmed fallow deer, was identified (I). As trace-back of all imported and in-contact deer was not possible, a control program, based on tuberculin testing, was implemented in July 1994. As Sweden has been free from BTB since 1958, few practicing veterinarians had experience in tuberculin testing. In this test, result relies on the skill, experience and conscientiousness of the testing veterinarian. Deficiencies in performing the test may adversely affect the test results and thereby compromise a control program. Quality indicators may identify possible deficiencies in testing procedures. For that purpose, reference values for measured skin fold thickness (prior to injection of the tuberculin) were established (II) suggested to be used mainly by less experienced veterinarians to identify unexpected measurements. Furthermore, the within-veterinarian variation of the measured skin fold thickness was estimated by fitting general linear models to data (skin fold measurements) (III). The mean square error was used as an estimator of the within-veterinarian variation. Using this method, four (6%) veterinarians were considered to have unexpectedly large variation in measurements. In certain large extensive deer farms, where mustering of all animals was difficult, meat inspection was suggested as an alternative to tuberculin testing. The efficiency of such a control was estimated in paper IV and V. A Reed Frost model was fitted to data from seven BTB-infected deer herds and the spread of infection was estimated (< 0.6 effective contacts per deer and year) (IV). These results were used to model the efficiency of meat inspection in an average extensive Swedish deer herd. Given a 20% annual slaughter and meat inspection, the model predicted that BTB would be either detected or eliminated in most herds (90%) 15 years after introduction of one infected deer. In 2003, an alternative control for BTB in extensive Swedish deer herds, based on the results of paper V, was implemented.
Resumo:
Bovine tuberculosis (TB) is an infectious and communicable granulomatous disease caused by the acidfast bacilli bacteria of Mycobacterium bovis (M. bovis). It is commonly a chronic, debilitating disease, but occasionally may assume an acute, rapidly progressive course. M. bovisis a widespread zoonosis that is global in magnitude and affects nearly all species of vertebrates (cattle, sheep, goats, pigs, bison, buffalo, and camelids.) Disease is spread by direct contact, inhalation of infected droplets expelled from infected lungs, and ingestion of contaminated feed or milk. In most countries, TB is a notifiable disease. Overall, TB has an important world-wide impact on animal industries and human health. Control measures are based on prevention and eradication. Surveillance is a key element for management of preventions and control programs. Surveillance for TB serves the purpose of enabling Veterinary Services to obtain an accurate picture of the scope of the disease in the US livestock populations; in the event of a disease outbreak, the course TB follows in livestock and wildlife populations for a given area over time; and permits timely intervention if the trend observed deviates from what is expected.