863 resultados para Bovine - Infectious disease


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An SEI metapopulation model is developed for the spread of an infectious agent by migration. The model portrays two age classes on a number of patches connected by migration routes which are used as host animals mature. A feature of this model is that the basic reproduction ratio may be computed directly, using a scheme that separates topography, demography, and epidemiology. We also provide formulas for individual patch basic reproduction numbers and discuss their connection with the basic reproduction ratio for the system. The model is applied to the problem of spatial spread of bovine tuberculosis in a possum population. The temporal dynamics of infection are investigated for some generic networks of migration links, and the basic reproduction ratio is computed—its value is not greatly different from that for a homogeneous model. Three scenarios are considered for the control of bovine tuberculosis in possums where the spatial aspect is shown to be crucial for the design of disease management operations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Paramedics and other emergency health workers are exposed to infectious disease particularly when undertaking exposure-prone procedures as a component of their everyday practice. This study examined paramedic knowledge of infectious disease aetiology and transmission in the pre-hospital care environment.--------- Methods: A mail survey of paramedics from an Australian ambulance service (n=2274) was conducted.--------- Results: With a response rate of 55.3% (1258/2274), the study demonstrated that paramedic knowledge of infectious disease aetiology and modes of transmission was poor. Of the 25 infectious diseases included in the survey, only three aetiological agents were correctly identified by at least 80% of respondents. The most accurate responses for aetiology of individual infectious diseases were for HIV/AIDS (91.4%), influenza (87.4%), and hepatitis B (85.7%). Poorest results were observed for pertussis, infectious mononucleosis, leprosy, dengue fever, Japanese B encephalitis and vancomycin resistant enterococcus (VRE), all with less than half the sample providing a correct response. Modes of transmission of significant infectious diseases were also assessed. Most accurate responses were found for HIV/AIDS (85.8%), salmonella (81.9%) and influenza (80.1%). Poorest results were observed for infectious mononucleosis, diphtheria, shigella, Japanese B encephalitis, vancomycin resistant enterococcus, meningococcal meningitis, rubella and infectious mononucleosis, with less than a third of the sample providing a correct response.--------- Conclusions: Results suggest that knowledge of aetiology and transmission of infectious disease is generally poor amongst paramedics. A comprehensive in-service education infection control programs for paramedics with emphasis on infectious disease aetiology and transmission is recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this Special Issue is to collect together a group of outstanding applied mathematics research articles that provide new insight into our understanding of infectious diseases and infectious disease modelling. The scope of the articles is broad, encompassing both specific applications of modelling to particular examples of infectious diseases, as well as articles that are devoted to the development of more general theoretical insight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past decade there has been an increased awareness in the field of international relations of the potential impact of an infectious disease epidemic on national security. While states’ attempts to combat infectious disease have a long history, what is new in this area is the adoption at the international level of securitized responses regarding the containment of infectious disease. This article argues that the securitization of infectious disease by states and the World Health Organization (WHO) has led to two key developments. First, the WHO has had to assert itself as the primary actor that all states, particularly western states, can rely upon to contain the threat of infectious diseases. The WHO's apparent success in this is evidenced by the development of the Global Outbreak Alert Response Network (GOARN), which has led to arguments that the WHO has emerged as the key authority in global health governance. The second outcome that this article seeks to explore is the development of the WHO's authority in the area of infectious disease surveillance. In particular, is GOARN a representation of the WHO's consummate authority in the area of coordinating infectious disease response or is GOARN the product of the WHO's capitulation to western states’ concerns with preventing infectious disease outbreaks from reaching their borders and as a result, are arguments expressing the authority of the WHO in infectious disease response premature?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Internet-based surveillance systems provide a novel approach to monitoring infectious diseases. Surveillance systems built on internet data are economically, logistically and epidemiologically appealing and have shown significant promise. The potential for these systems has increased with increased internet availability and shifts in health-related information seeking behaviour. This approach to monitoring infectious diseases has, however, only been applied to single or small groups of select diseases. This study aims to systematically investigate the potential for developing surveillance and early warning systems using internet search data, for a wide range of infectious diseases. Methods Official notifications for 64 infectious diseases in Australia were downloaded and correlated with frequencies for 164 internet search terms for the period 2009–13 using Spearman’s rank correlations. Time series cross correlations were performed to assess the potential for search terms to be used in construction of early warning systems. Results Notifications for 17 infectious diseases (26.6%) were found to be significantly correlated with a selected search term. The use of internet metrics as a means of surveillance has not previously been described for 12 (70.6%) of these diseases. The majority of diseases identified were vaccine-preventable, vector-borne or sexually transmissible; cross correlations, however, indicated that vector-borne and vaccine preventable diseases are best suited for development of early warning systems. Conclusions The findings of this study suggest that internet-based surveillance systems have broader applicability to monitoring infectious diseases than has previously been recognised. Furthermore, internet-based surveillance systems have a potential role in forecasting emerging infectious disease events, especially for vaccine-preventable and vector-borne diseases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since its initial description as a Th2-cytokine antagonistic to interferon-alpha and granulocyte-macrophage colony-stimulating factor, many studies have shown various anti-inflammatory actions of interleukin-10 (IL-10), and its role in infection as a key regulator of innate immunity. Studies have shown that IL-10 induced in response to microorganisms and their products plays a central role in shaping pathogenesis. IL-10 appears to function as both sword and shield in the response to varied groups of microorganisms in its capacity to mediate protective immunity against some organisms but increase susceptibility to other infections. The nature of IL-10 as a pleiotropic modulator of host responses to microorganisms is explained, in part, by its potent and varied effects on different immune effector cells which influence antimicrobial activity. A new understanding of how microorganisms trigger IL-10 responses is emerging, along with recent discoveries of how IL-10 produced during disease might be harnessed for better protective or therapeutic strategies. In this review, we summarize studies from the past 5 years that have reported the induction of IL-10 by different classes of pathogenic microorganisms, including protozoa, nematodes, fungi, viruses and bacteria and discuss the impact of this induction on the persistence and/or clearance of microorganisms in the host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Bovine respiratory disease complex (BRDC) is a multi-factorial disease in which numerous factors, such as animal management, pathogen exposure and environmental conditions, contribute to the development of acute respiratory illness in feedlot cattle. The role of specific pathogens in the development of BRDC has been difficult to define because of the complex nature of the disease and the presence of implicated bacterial pathogens in the upper respiratory tract of healthy animals. Mycoplasma bovis is an important pathogen of cattle and recognised as a major contributor to cases of mastitis, caseonecrotic bronchopneumonia, arthritis and otitis media. To date, the role of M.bovis in the development of BRDC of Australian feeder cattle has not been investigated. Methods: In this review, the current literature pertaining to the role of M.bovis in BRDC is evaluated. In addition, preliminary data are presented that identify M.bovis as a potential contributor to BRDC in Australian feedlots, which has not been considered previously. Results and Conclusion: The preliminary results demonstrate detection of M.bovis in samples from all feedlots studied. When considered in the context of the reviewed literature, they support the inclusion of M.bovis on the list of pathogens to be considered during investigations into BRDC in Australia. © 2014 Australian Veterinary Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Avian malaria and related haematozoa are nearly ubiquitous parasites that can impose fitness costs of variable severity and may, in some cases, cause substantial mortality in their host populations. One example of the latter, the emergence of avian malaria in the endemic avifauna of Hawaii, has become a model for understanding the consequences of human-mediated disease introduction. The drastic declines of native Hawaiian birds due to avian malaria provided the impetus for examining more closely several aspects of host-parasite interactions in this system. Host-specificity is an important character determining the extent to which a parasite may emerge. Traditional parasite classification, however, has used host information as a character in taxonomical identification, potentially obscuring the true host range of many parasites. To improve upon previous methods, I first developed molecular tools to identify parasites infecting a particular host. I then used these molecular techniques to characterize host-specificity of parasites in the genera Plasmodium and Haemoproteus. I show that parasites in the genus Plasmodium exhibit low specificity and are therefore most likely to emerge in new hosts in the future. Subsequently, I characterized the global distribution of the single lineage of P. relictum that has emerged in Hawaii. I demonstrate that this parasite has a broad host distribution worldwide, that it is likely of Old World origin and that it has been introduced to numerous islands around the world, where it may have been overlooked as a cause of decline in native birds. I also demonstrate that morphological classification of P. relictum does not capture differences among groups of parasites that appear to be reproductively isolated based on molecular evidence. Finally, I examined whether reduced immunological capacity, which has been proposed to explain the susceptibility of Hawaiian endemics, is a general feature of an "island syndrome" in isolated avifauna of the remote Pacific. I show that, over multiple time scales, changes in immune response are not uniform and that observed changes probably reflect differences in genetic diversity, parasite exposure and life history that are unique to each species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing appreciation that hosts in natural populations are subject to infection by multiple parasite species. Yet the epidemiological and ecological processes determining the outcome of mixed infections are poorly understood. Here, we use two intracellular gut parasites (Microsporidia), one exotic and one co-evolved in the western honeybee (Apis mellifera), in an experiment in which either one or both parasites were administered either simultaneously or sequentially. We provide clear evidence of within-host competition; order of infection was an important determinant of the competitive outcome between parasites, with the first parasite significantly inhibiting the growth of the second, regardless of species. However, the strength of this ‘priority effect’ was highly asymmetric, with the exotic Nosema ceranae exhibiting stronger inhibition of Nosema apis than vice versa. Our results reveal an unusual asymmetry in parasite competition that is dependent on order of infection. When incorporated into a mathematical model of disease prevalence, we find asymmetric competition to be an important predictor of the patterns of parasite prevalence found in nature. Our findings demonstrate the wider significance of complex multi-host–multi-parasite interactions as drivers of host–pathogen community structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bovine Respiratory Disease (BRD) is considered to be one of the most significant causes of economic loss in cattle worldwide. The disease has multifactorial aetiology, where viral induced respiratory damage can predispose animals to developing secondary bacterial infections. Accurate identification of viral infected animals prior to the onset of bacterial infection is necessary to reduce the overuse of antimicrobial treatments and minimize further economic losses from reduced production capacity and death. This research focuses on Bovine Parainfluenza Virus Type 3 (BPIV-3), one of the viruses involved in generating BRD. Vaccination measures for BPIV-3 can induce a level of immunity preventing disease progression, however, not all animals respond equally and immunization can complicate disease diagnosis. Alternative diagnostic approaches are required to identify animals which fail to respond to vaccination during infection outbreaks and are therefore likely to be more susceptible to secondary bacterial infections. Mass spectrometry based metabolomics was employed to identify plasma markers capable of differentiating between vaccinated and non-vaccinated calves after challenge with BPIV-3. Differentiation of vaccinated and non-vaccinated study groups (n=6) was possible as early as day 2 post-BPIV-3 challenge up until day 20 using a panel of potential metabolite markers. This study illustrates the potential for metabolomics to provide more detailed information on animal vaccination status that could be used to develop tools for improved herd health management, reduce economic loss through rapid identification and isolation of animals without immune protection (improving herd level immunity) and help reduce the usage of antimicrobial therapeutic treatments in animals.