978 resultados para Bothrops leucurus venom


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bites from snake (Bothrops genus) cause local tissue damage and systemic complications, which include alterations such as hemostatic system and acute renal failure (ARF). Recent studies suggest that ARF pathogenesis in snakebite envenomation is multifactorial and involves hemodynamic disturbances, immunologic reactions and direct nephrotoxicity. The aim of the work was to investigate the effects of the Bothrops leucurus venom (BlV) in the renal perfusion system and in cultured renal tubular cells of the type MDCK (Madin-Darby Canine kidney). BlV (10 μg/mL) reduced the perfusion pressure at 90 and 120 min. The renal vascular resistance (RVR) decreased at 120 min of perfusion. The effect on urinary flow (UF) and glomerular filtration rate (GFR) started 30 min after BlV infusion, was transient and returned to normal at 120 min of perfusion. It was also observed a decrease on percentual tubular transport of sodium (%TNa+) at 120 min and of chloride (%TCl-) at 60 and 90 min. The treatment with BlV caused decrease in cell viability to the lowest concentration tested with an IC50 of 1.25 μg/mL. Flow cytometry with annexin V and propidium iodide showed that cell death occurred predominantly by necrosis. However, a cell death process may involve apoptosis in lower concentrations. BlV treatment (1.25 μg/mL) led to significant depolarization of the mitochondrial membrane potential and, indeed, we found an increase in the expression of cell death genes in the lower concentrations tested. The venom also evoked an increase in the cytosolic Ca2+ in a concentration dependent manner, indicating that Ca2+ may participate in the venom of B. leucurus effect. The characterization of the effects in the isolated kidney and renal tubular cells gives strong evidences that the acute renal failure induced by this venom is a result of the direct nephrotoxicity which may involve the cell death mechanism. © 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Microbiologia - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characterization of the peptide content of venoms has a number of potential benefits for basic research, clinical diagnosis, development of new therapeutic agents, and production of antiserum. Here, we use a substrate-capture assay that employs a catalytically inactive mutant of thimet oligopeptidase (EC 3.4.24.15; EP24.15) to identify novel bioactive peptides in Bothrops jararacussu venom. Of the peptides captured with inactive EP24.15 and identified by mass spectrometry, three were previously identified bradykinin-potentiating peptides (BPP), < ENWPHPQIPP (Xc), < EGGWPRPGPEIPP (XIIIa) and < EARPPHPPIPP (XIe) (where < E is a pyroglutamyl residue). In addition, we identified a novel BPP peptide containing additional AP amino acids in the C-terminus (< EARPPHPPIPPAP); this novel peptide was named BPP-AP. Next, dermal and muscle microcirculations were visualized using intravital microscopy to establish the roles of peptides BPP-XIe and BPP-AP in this process. After local administration of peptide BPP-XIe (0.5 mu g.mu L-1), leukocyte rolling flux and adhesion were increased by fivefold in post-capillary venules, without any increments in vasodilatation of arterioles compared to control experiments. In contrast, local administration of BPP-AP (0.5 mu g.mu L-1) potently induced vasodilatation of arterioles (nearly 100% increase compared with the vehicle saline control), with only a small increase in leukocyte rolling flux. Therefore, the novel BPP-AP described herein has pharmacological advantages compared to the BPP-XIe. The present study further suggests that inactive oligopeptidase EP24.15 is a useful tool for the isolation of bioactive peptides from crude biological samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological activity of the proline rich decapeptde Bj PRO 10c a processing product of the C type natriuretic peptide precursor protein, expressed in the brain and the venom gland of the pit viper Bothrops jararaca, was originally attributed to the inhibition of the somatic angiotensm converting enzyme activity with subsequent ant hypertensive effect However recent results suggest broader biological activity may also be involved in the cardiovascular effects of this peptide Here we show that Bj PRO 10c enhances and sustains the generation of nitric made (NO) by regulating argininosuccinate synthase activity and thereby velocity of the citrulline NO cycle Bj PRO 10c-mediated effects not restricted to the cardiovascular system since NO production was also induced in cells of astroglial origin Bj PRO 10c was internalized by C6 astroglioma cells where it induces NO production and upregulation of the citrulline NO cycle cells in a dose dependent fashion In view of that, astroglial cells function as L arginine pool for NO production in neighboring neurons, we suggest a regulatory function for Bj PRO-10c on the metabolism of this gaseous neurotransmitter in the CNS Moreover, proliferation of astroglial cells was reduced in the presence of Bj PRO 10c however, cell death was not induced Since NO donors have been studied for the treatment of solid cancers Bj PRO 10c may serve as structural model for developing drugs to improve the effects of cancer therapy based on the peptide`s ability to augment NO production (C) 2010 Elsevier B V All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyroglutamyl proline-rich oligopeptides, present in the venom of the pit viper Bothrops jararaca (Bj-PROs), are the first described naturally occurring inhibitors of the angiotensin I-converting enzyme (ACE). The inhibition of ACE by the decapeptide Bj-PRO-10c (venom peptides in mammals resulting in a decrease of blood pressure. Recent studies, however, suggest that ACE inhibition alone is not sufficient for explaining the antihypertensive actions exerted by these peptides. In this study, we show that intracerebroventricular injection of Bj-PRO-10c induced a significant reduction of mean arterial pressure (MAP) together with a decrease of heart rate (HR) in spontaneously hypertensive rats, indicating that Bj-PRO-10c may act on the central nervous system. In agreement with its supposed neuronal action, this peptide dose-dependently evoked elevations of intracellular calcium concentration ([Ca(2+)](i)) in primary culture from postnatal rat brain. The N-terminal sequence of the peptide was not essential for induction of calcium fluxes, while any changes of C-terminal Pro or Ile residues affected Bj-PRO-10c`s activity. Using calcium imaging by confocal microscopy and fluorescence imaging plate reader analysis, we have characterized Bj-PRO-10c-induced [Ca(2+)](i) transients in rat brain cells as being independent from bradykinin-mediated effects and ACE inhibition. Bj-PRO-10c induced pertussis toxin-sensitive G(i/o)-protein activity mediated through a yet unknown receptor, influx and liberation of calcium from intracellular stores, as well as reduction of intracellular cAMP levels. Bj-PRO-10c promoted glutamate and GABA release that may be responsible for its antihypertensive activity and its effect on HR. (C) 2010 International Society for Advancement of Cytometry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snake venom metalloproteinases (SVMPs) have been extensively studied and their effects associated with the local bleeding observed in human accidents by viper snakes. Representatives of P-I and P-III classes of SVMPs similarly hydrolyze extracellular matrix proteins or coagulation factors while only P-III SVMPs induce significant hemorrhage in experimental models. In this work, the effects of P-I and P-III SVMPs on plasma proteins and cultures of muscle and endothelial cells were compared in order to enlighten the mechanisms involved in venom-induced hemorrhage. To reach this comparison, BnP1 was isolated from B. neuwiedi venom and used as a weakly hemorrhagic P-I SVMPs and jararhagin was used as a model of potently hemorrhagic P-III SVMP. BnP1 was isolated by size exclusion and anion-exchange chromatographies, showing apparent molecular mass of approximately 24kDa and sequence similarity with other members of SVMPs, which allowed its classification as a group P-I SVMP. The comparison of local effects induced by SVMPs showed that BnP1 was devoid of significant myotoxic and hemorrhagic activities and jararhagin presented only hemorrhagic activity. BnP1 and jararhagin were able to hydrolyze fibrinogen and fibrin, although the latter displayed higher activity in both systems. Using HUVEC primary cultures, we observed that BnP1 induced cell detachment and a decrease in the number of viable endothelial cells in levels comparable to those observed by treatment with jararhagin. Moreover, both BnP1 and jararhagin induced apoptosis in HUVECs while only a small increase in LDH supernatant levels was observed after treatment with jararhagin, suggesting that the major mechanism involved in endothelial cell death is apoptosis. Jararhagin and BnP1 induced little effects on C2C12 muscle cell cultures, characterized by a partial detachment 24h after treatment and a mild necrotic effect as evidenced by a small increase in the supernatants LDH levels. Taken together, our data show that P-I and P-III SVMPs presented comparable effects except for the hemorrhagic activity, suggesting that hydrolysis of coagulation factors or damage to endothelial cells are not sufficient for induction of local bleeding. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bothropasin is a 48 kDa hemorrhagic PIII snake venom metalloprotease (SVMP) isolated from Bothrops jararaca, containing disintegrin/cysteine-rich adhesive domains. Here we present the crystal structure of bothropasin complexed with the inhibitor POL647. The catalytic domain consists of a scaffold of two subdomains organized similarly to those described for other SVMPs, including the zinc and calcium-binding sites. The free cysteine residue Cys(189) is located within a hydrophobic core and it is not available for disulfide bonding or other interactions. There is no identifiable secondary structure for the disintegrin domain, but instead it is composed mostly of loops stabilized by seven disulfide bonds and by two calcium ions. The ECD region is in a loop and is structurally related to the RGD region of RGD disintegrins, which are derived from I`ll SVMPs. The ECD motif is stabilized by the Cys(117)_Cys(310) disulfide bond (between the disintegrin and cysteine-rich domains) and by one calcium ion. The side chain of Glu(276) of the ECD motif is exposed to solvent and free to make interactions. In bothropasin, the HVR (hyper-variable region) described for other Pill SVMPs in the cysteine-rich domain, presents a well-conserved sequence with respect to several other Pill members from different species. We propose that this subset be referred to as PIII-HCR (highly conserved region) SVMPs. The differences in the disintegrin-like, cysteine-rich or disintegrin-like cysteine-rich domains may be involved in selecting target binding, which in turn could generate substrate diversity or specificity for the catalytic domain. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bothrops jararacussu myotoxin I (BthTx-I; Lys 49) and II (BthTX-II; Asp 49) were purified by ion-exchange chromatography and reverse phase HPLC. In this work we used the isolated perfused rat kidney method to evaluate the renal effects of B. jararacussu myotoxins I (Lys49 PLA(2)) and II (Asp49 PLA(2)) and their possible blockage by indomethacin. BthTX-1 (5 mu g/ml) and BthTX-II (5 mu g/ml) increased perfusion pressure (PP; ct(120) = 110.28+/-3.70 mmHg; BthTX I = 171.28+/-6.30* mmHg; BthTX II = 175.50+/-7.20* mmHg), renal vascular resistance (RVR; ct(120) = 5.49+/-0.54 mmHg/ml.g(-1) min(-1); BthTX I = 8.62+/-0.37* mmHg/ml g(-1) min(-1); BthTX II=8.9+/-0.36* mmHg/ml g(-1) min(-1)), urinary flow (UF; ct(120)= 0.14+/-0.01 ml g(-1) min(-1); BthTX I=0.32+/-0.05* ml g(-1) min(-1); BthTX II=0.37+/-0.01* ml g(-1) min(-1)) and glomerular filtration rate (GFR; ct(120)=0.72+/-0.10 ml g(-1) min(-1); BthTX I=0.85+/-0.13* ml g(-1) min(-1); BthTX II=1.22+/-0.28* ml g(-1) min(-1)). In contrast decreased the percent of sodium tubular transport (%TNa+; ct(120)=79,76+/-0.56; BthTX I=62.23+/-4.12*; BthTX II=70.96+/-2.93*) and percent of potassium tubular transport (%TK+;ct(120)=66.80+/-3.69; BthTX I=55.76+/-5.57*; BthTX II=50.86+/-6.16*). Indomethacin antagonized the vascular, glomerular and tubular effects promoted by BthTX I and it's partially blocked the effects of BthTX II. In this work also evaluated the antibacterial effects of BthTx-I and BthTx-II against Xanthomonas axonopodis. pv. passiflorae (Gram-negative bacteria) and we observed that both PLA2 showed antibacterial activity. Also we observed that proteins Also we observed that proteins chemically modified with 4-bromophenacyl bromide (rho-BPB) decrease significantly the antibacterial effect of both PLA(2). In conclusion, BthTx I and BthTX II caused renal alteration and presented activity antimicrobial. The indomethacin was able to antagonize totally the renal effects induced by BthTx I and partially the effects promoted by BthTx II, suggesting involvement of inflammatory mediators in the renal effects caused by myotoxins. In the other hand, other effects could be independently of the enzymatic activity of the BthTX II and the C-terminal domain could be involved in both effects promoted for PLA(2). (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bothrops insularis venom contains a variety of substances presumably responsible for several pharmacological effects. We investigated the biochemical and biological effects of phospholipase A(2) protein isolated from B. insularis venom and the chromatographic profile showed 7 main fractions and the main phospholipase A(2) (PLA(2)) enzymatic activity was detected in fractions IV and V. Fraction IV was submitted to a new chromatographic procedure on ion exchange chromatography, which allowed the elution of 5 main fractions designated as lV-1 to IV-5, from which lV-4 constituted the main fraction. The molecular homogeneity of this fraction was characterized by high-performance liquid chromatography (HPLC) and demonstrated by mass spectrometry (MS), which showed a molecular mass of 13984.20 Da; its N-terminal sequence presented a high amino acid identity (up to 95%) with the PLA(2) of Bothrops jararaca and Bothrops asper. Phospholipase A(2) isolated from B. insularis (Bi PLA(2)) venom (10 mu g/mL) was also studied as to its effect on the renal function of isolated perfused kidneys of Wistar rats (n = 6). Bi PLA(2) increased perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF) and glomerular filtration rate (GFR). Sodium (%TNa+) and chloride tubular reabsorption (%TCl-) decreased at 120 min, without alteration in potassium transport. In conclusion, PLA(2) isolated from B. insularis venom promoted renal alterations in the isolated perfused rat kidney. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bothrops marajoensis is found in the savannah of Marajo Island in the State of Par S and regions of Amapa State, Brazil. The aim of the work was to study the renal and cardiovascular effects of the B. marajoensis venom and phospholipase A(2) (PLA(2)). The venom was fractionated by Protein Pack 5PW. N-terminal amino acid sequencing of sPLA(2) showed amino acid identity with other lysine K49sPLA(2)s of snake venom. B. marajoensis venom (30 mu g/mL) decreased the perfusion pressure, renal vascular resistance, urinary flow, glomerular filtration rate and sodium tubular transport. PLA(2) did not change the renal parameters. The perfusion pressure of the mesenteric bed did not change after infusion of venom. In isolated heart, the venom decreased the force of contraction and increased PP but did not change coronary flow. In the arterial pressure, the venom and PLA(2) decreased mean arterial pressure and cardiac frequency. The presence of atrial flutter and late hyperpolarisation reversed, indicating QRS complex arrhythmia and dysfunction in atrial conduction. In conclusion, B. marajoensis venom and PLA(2) induce hypotension and bradycardia while simultaneously blocking electrical conduction in the heart. Moreover, the decrease in glomerular filtration rate, urinary flow and electrolyte transport demonstrates physiological changes to the renal system. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)