992 resultados para Bothrops accident
Resumo:
The first reported case of an accident with Bothriopsis taeniata in Brazil is described. The victim, a 43-year-old man, was bitten just above his right heel and presented a clinical condition compatible with mild Bothrops poisoning: local edema with hemorrhage at the bite site and pain, although without coagulopathy.
Resumo:
INTRODUCTION: Bothrops and Bothropoides snakes cause 70% of the ophidic accidents in Brazil. The species that cause ophidic accidents in State of Paraíba are Bothropoides erythromelas, Bothrops leucurus and Bothropoides neuwiedi. METHODS: This is a prospective and transverse study, following a quantitative approach of accidents involving Bothrops and Bothropoides admitted to the Toxicological Assistance and Information Centers of Campina Grande and João Pessoa (Ceatox-CG and Ceatox-JP), aimed at identifying the epidemiological and clinical profile of such accidents. All of the patients admitted had medical diagnoses and were monitored at Ceatox-CG or Ceatox-JP. RESULTS: The genera Bothrops and Bothropoides caused 91.7% of the ophidic accidents reported. Snake bites were frequent in men (75.1%), rural workers (65.1%), literate individuals (69%) between 11 and 20 years-old (21.7%), and toes the most common area attacked (52.7%). Most (86.6%) patients were admitted within 6 hours after the accident/bite, with a predominance of mild cases (64.6%). The annual occurrence in Paraíba was 5.5 accidents/100,000 inhabitants and lethality was 0.2%. CONCLUSIONS: Positive changes in the profiles of these accidents were verified, such as the non-application of inadequate solutions, including the use of tourniquet, coffee grounds, garlic, suction and/or cutting the bitten area. Moreover, the Itinerant Laboratory project, linked to Paraíba State University in partnership with Ceatox-CG, has contributed positively, providing several cities of the state with information regarding the prevention of accidents involving venomous animals. The local press has also contributed, reporting the educational work developed by the centers.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Snakebite is a neglected disease and serious health problem in Brazil, with most bites being caused by snakes of the genus Bothrops. Although serum therapy is the primary treatment for systemic envenomation, it is generally ineffective in neutralizing the local effects of these venoms. In this work, we examined the ability of 7,8,3'-trihydroxy-4'-methoxyisoflavone (TM), an isoflavone from Dipteryx alata, to neutralize the neurotoxicity (in mouse phrenic nerve-diaphragm preparations) and myotoxicity (assessed by light microscopy) of Bothrops jararacussu snake venom in vitro. The toxicity of TM was assessed using the Salmonella microsome assay (Ames test). Incubation with TM alone (200 μg/mL) did not alter the muscle twitch tension whereas incubation with venom (40 μg/mL) caused irreversible paralysis. Preincubation of TM (200 μg/mL) with venom attenuated the venom-induced neuromuscular blockade by 84% ± 5% (mean ± SEM; n = 4). The neuromuscular blockade caused by bothropstoxin-I (BthTX-I), the major myotoxic PLA2 of this venom, was also attenuated by TM. Histological analysis of diaphragm muscle incubated with TM showed that most fibers were preserved (only 9.2% ± 1.7% were damaged; n = 4) compared to venom alone (50.3% ± 5.4% of fibers damaged; n = 3), and preincubation of TM with venom significantly attenuated the venom-induced damage (only 17% ± 3.4% of fibers damaged; n = 3; p < 0.05 compared to venom alone). TM showed no mutagenicity in the Ames test using Salmonella strains TA98 and TA97a with (+S9) and without (-S9) metabolic activation. These findings indicate that TM is a potentially useful compound for antagonizing the neuromuscular effects (neurotoxicity and myotoxicity) of B. jararacussu venom.
Resumo:
Basic phospholipases A2 (PLA2) are toxic and induce a wide spectrum of pharmacological effects, although the acidic enzyme types are not lethal or cause low lethality. Therefore, it is challenging to elucidate the mechanism of action of acidic phospholipases. This study used the acidic non-toxic Ba SpII RP4 PLA2 from Bothrops alternatus as an antigen to develop anti-PLA2 IgG antibodies in rabbits and used in vivo assays to examine the changes in crude venom when pre-incubated with these antibodies. Using Ouchterlony and western blot analyses on B. alternatus venom, we examined the specificity and sensitivity of phospholipase A2 recognition by the specific antibodies (anti-PLA2 IgG). Neutralisation assays using a non-toxic PLA2 antigen revealed unexpected results. The (indirect) haemolytic activity of whole venom was completely inhibited, and all catalytically active phospholipases A2 were blocked. Myotoxicity and lethality were reduced when the crude venom was pre-incubated with anti-PLA2 immunoglobulins. CK levels in the skeletal muscle were significantly reduced at 6 h, and the muscular damage was more significant at this time-point compared to 3 and 12 h. When four times the LD50 was used (224 μg), half the animals treated with the venom-anti PLA2 IgG mixture survived after 48 h. All assays performed with the specific antibodies revealed that Ba SpII RP4 PLA2 had a synergistic effect on whole-venom toxicity. IgG antibodies against the venom of the Argentinean species B. alternatus represent a valuable tool for elucidation of the roles of acidic PLA2 that appear to have purely digestive roles and for further studies on immunotherapy and snake envenoming in affected areas in Argentina and Brazil.
Resumo:
Envenoming by the pitviper Bothrops jararacussu produces cardiovascular alterations, including coagulopathy, systemic hemorrhage, hypotension, circulatory shock and renal failure. In this work, we examined the activity of this venom in rat isolated right atria. Incubation with venom (0.025, 0.05, 0.1 and 0.2mg/ml) caused concentration-dependent muscle contracture that was not reversed by washing. Muscle damage was seen histologically and confirmed by quantification of creatine kinase-MB (CK-MB) release. Heating and preincubation of venom with p-bromophenacyl bromide (a phospholipase A2 inhibitor) abolished the venom-induced contracture and muscle damage. In contrast, indomethacin, a non-selective inhibitor of cyclooxygenase, and verapamil, a voltage-gated Ca(2+) channel blocker, did not affect the responses to venom. Preincubation of venom with Bothrops or Bothrops/Crotalus antivenom or the addition of antivenom soon after venom attenuated the venom-induced changes in atrial function and tissue damage. These results indicate that B. jararacussu venom adversely affected rat atrial contractile activity and muscle organization through the action of venom PLA2; these venom-induced alterations were attenuated by antivenom.
Resumo:
The neuromuscular activity of venom from Bothrops fonsecai, a lancehead endemic to southeastern Brazil, was investigated. Chick biventer cervicis (CBC) and mouse phrenic nerve-diaphragm (PND) preparations were used for myographic recordings and mouse diaphragm muscle was used for membrane resting potential (RP) and miniature end-plate potential (MEPP) recordings. Creatine kinase release and muscle damage were also assessed. In CBC, venom (40, 80 and 160μg/ml) produced concentration- and time-dependent neuromuscular blockade (50% blockade in 85±9 min and 73±8 min with 80 and 160μg/ml, respectively) and attenuated the contractures to 110μM ACh (78-100% inhibition) and 40mM KCl (45-90% inhibition). The venom-induced decrease in twitch-tension in curarized, directly-stimulated preparations was similar to that in indirectly stimulated preparations. Venom (100 and 200μg/ml) also caused blockade in PND preparations (50% blockade in 94±13 min and 49±8 min with 100 and 200μg/ml, respectively) but did not alter the RP or MEPP amplitude. In CBC, venom caused creatine kinase release and myonecrosis. The venom-induced decrease in twitch-tension and in the contractures to ACh and K(+) were abolished by preincubating venom with commercial antivenom. These findings indicate that Bothrops fonsecai venom interferes with neuromuscular transmission essentially through postsynaptic muscle damage that affects responses to ACh and KCl. These actions are effectively prevented by commercial antivenom.
Resumo:
In this study, we show that administration of Bothrops moojeni venom in rats induces a general disturbance in the distribution and content of the tight junctional protein ZO-1, the cell-matrix receptor beta 1 integrin, the cytoskeletal proteins, vinculin and F-actin, and of the extracellular matrix component laminin in renal corpuscles and cortical nephron tubules. These findings suggest that cell-cell and cell-matrix adhesion proteins may be molecular targets in the B. moojeni-induced kidney injury.
Resumo:
A new PLA2 (Bp-13) was purified from Bothrops pauloensis snake venom after a single chromatographic step of RP-HPLC on μ-Bondapak C-18. Amino acid analysis showed a high content of hydrophobic and basic amino acids and 14 half-cysteine residues. The N-terminal sequence showed a high degree of homology with basic Asp49 PLA2 myotoxins from other Bothrops venoms. Bp-13 showed allosteric enzymatic behavior and maximal activity at pH 8.1, 36°-45°C. Full Bp-13 PLA2 activity required Ca(2+); its PLA2 activity was inhibited by Mg(2+), Mn(2+), Sr(2+), and Cd(2+) in the presence and absence of 1 mM Ca(2+). In the mouse phrenic nerve-diaphragm (PND) preparation, the time for 50% paralysis was concentration-dependent (P < 0.05). Both the replacement of Ca(2+) by Sr(2+) and temperature lowering (24°C) inhibited the Bp-13 PLA2-induced twitch-tension blockade. Bp-13 PLA2 inhibited the contractile response to direct electrical stimulation in curarized mouse PND preparation corroborating its contracture effect. In biventer cervicis preparations, Bp-13 induced irreversible twitch-tension blockade and the KCl evoked contracture was partially, but significantly, inhibited (P > 0.05). The main effect of this new Asp49 PLA2 of Bothrops pauloensis venom is on muscle fiber sarcolemma, with avian preparation being less responsive than rodent preparation. The study enhances biochemical and pharmacological characterization of B. pauloensis venom.
Resumo:
Despite the valuable contributions of robotics and high-throughput approaches to protein crystallization, the role of an experienced crystallographer in the evaluation and rationalization of a crystallization process is still crucial to obtaining crystals suitable for X-ray diffraction measurements. In this work, the difficult task of crystallizing the flavoenzyme l-amino-acid oxidase purified from Bothrops atrox snake venom was overcome by the development of a protocol that first required the identification of a non-amorphous precipitate as a promising crystallization condition followed by the implementation of a methodology that combined crystallization in the presence of oil and seeding techniques. Crystals were obtained and a complete data set was collected to 2.3 A resolution. The crystals belonged to space group P2(1), with unit-cell parameters a = 73.64, b = 123.92, c = 105.08 A, beta = 96.03 degrees. There were four protein subunits in the asymmetric unit, which gave a Matthews coefficient V (M) of 2.12 A3 Da-1, corresponding to 42% solvent content. The structure has been solved by molecular-replacement techniques.
Resumo:
Preeclampsia, a pregnancy-specific syndrome characterized by hypertension, proteinuria and edema, is a major cause of fetal and maternal morbidity and mortality especially in developing countries. Bj-PRO-10c, a proline-rich peptide isolated from Bothrops jararaca venom, has been attributed with potent anti-hypertensive effects. Recently, we have shown that Bj-PRO-10c-induced anti-hypertensive actions involved NO production in spontaneous hypertensive rats. Using in vitro studies we now show that Bj-PRO-10c was able to increase NO production in human umbilical vein endothelial cells from hypertensive pregnant women (HUVEC-PE) to levels observed in HUVEC of normotensive women. Moreover, in the presence of the peptide, eNOS expression as well as argininosuccinate synthase activity, the key rate-limiting enzyme of the citrulline-NO cycle, were enhanced. In addition, excessive superoxide production due to NO deficiency, one of the major deleterious effects of the disease, was inhibited by Bj-PRO-10c. Bj-PRO-10c induced intracellular calcium fluxes in both, HUVEC-PE and HUVEC, which, however, led to activation of eNOS expression only in HUVEC-PE. Since Bj-PRO-10c promoted biological effects in HUVEC from patients suffering from the disorder and not in normotensive pregnant women, we hypothesize that Bj-PRO-10c induces its anti-hypertensive effect in mothers with preeclampsia. Such properties may initiate the development of novel therapeutics for treating preeclampsia.
Resumo:
Baroreflex sensitivity is disturbed in many people with cardiovascular diseases such as hypertension. Brain deficiency of nitric oxide (NO), which is synthesized by NO synthase (NOS) in the citrulline-NO cycle (with argininosuccinate synthase (ASS) activity being the rate-limiting step), contributes to impaired baroreflex. We recently showed that a decapeptide isolated from Bothrops jararaca snake venom, denoted Bj-PRO-10c, exerts powerful and sustained antihypertensive activity. Bj-PRO-10c promoted vasodilatation dependent on the positive modulation of ASS activity and NO production in the endothelium, and also acted on the central nervous system, inducing the release of GABA and glutamate, two important neurotransmitters in the regulation of autonomic systems. We evaluated baroreflex function using the regression line obtained by the best-fit points of measured heart rate (HR) and mean arterial pressure (MAP) data from spontaneously hypertensive rats (SHRs) treated with Bj-PRO-10c. We also investigated molecular mechanisms involved in this effect, both in vitro and in vivo. Bj-PRO-10c mediated an increase in baroreflex sensitivity and a decrease in MAP and HR. The effects exerted by the peptide include an increase in the gene expression of endothelial NOS and ASS. Bj-PRO-10c-induced NO production depended on intracellular calcium fluxes and the activation of a G(i/o)-protein-coupled metabotropic receptor. Bj-PRO-10c induced NO production and the gene expression of ASS and endothelial NOS in the brains of SHRs, thereby improving baroreflex sensitivity. Bj-PRO-10c may reveal novel approaches for treating diseases with impaired baroreflex function. Hypertension Research (2010) 33, 1283-1288; doi: 10.1038/hr.2010.208
Resumo:
In this study, the production of prostaglandin E(2) (PGE(2)) and up-regulation in cyclooxygenase (COX) pathway induced by a phospholipase A(2) (PLA(2)), myotoxin-III (MT-III), purified from Bothrops asper snake venom, in isolated neutrophils were investigated. The arachidonic acid (AA) production and the participation of intracellular PLA(2)s (cytosolic PLA(2) and Ca(2+)-independent PLA(2)) in these events were also evaluated. MT-III induced COX-2, but not COX-1 gene and protein expression in neutrophils and increased PGE(2) levels. Pretreatment of neutrophils with COX-2 and COX-1 inhibitors reduced PGE(2) production induced by MT-III. Arachidonyl trifluoromethyl ketone (AACOCF(3)), an intracellular PLA(2) inhibitor, but not bromoenol lactone (BEL), an iPLA(2) inhibitor, suppressed the MT-III-induced AA and PGE(2) release. In conclusion, MT-III directly stimulates neutrophils inducing COX-2 mRNA and protein expression followed by production of PGE(2). COX-2 isoform is preeminent over COX-1 for production of PGE(2) stimulated by MT-III. PGE(2) and AA release by MT-III probably is related to cPLA(2) activation. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The effects of myotoxin III (MT-III), a phospholipase A(2) (sPLA(2)) from Bothrops asper snake venom, and crotoxin B (CB), a neurotoxic and myotoxic sPLA2 from the venom of Crotalus durissus terrificus, on cyclooxygenases (COXs) expression and biosynthesis of prostaglandins (PGs) were evaluated, together with the mechanisms involved in these effects. Upon intraperitoneal injection in mice, both sPLA(2)s promoted the synthesis of PGD(2) and PGE(2), with a different time-course. MT-III, but not CB, induced COX-2 expression by peritoneal leukocytes without modification on COX-1 constitutive expression, whereas CB increased the constitutive activity of COX-1. MT-III increased the enzymatic activity of COX-1 and COX-2. Similar effects were observed when these sPLA(2)s were incubated with isolated macrophages, evidencing a direct effect on these inflammatory cells. Moreover, both toxins elicited the release of arachidonic acid from macrophages in vitro. inhibition of cPLA(2) by AACOCF(3), but not of iPLA(2) by PACOCF(3) or BEL, significantly reduced PGD2, PGE2 and arachidonic acid (AA) release promoted by MT-III. These inhibitors did not affect MT-III-induced COX-2 expression. In contrast, cPLA2 inhibition did not modify the effects of CB, whereas iPLA2 inhibition reduced PGD2 and AA production induced by CB. These findings imply that distinct regulatory mechanisms leading to PGs` synthesis are triggered by these snake venom sPLA(2)s. Such differences are likely to explain the dissimilar patterns of inflammatory reaction elicited by these sPLA(2)s in vivo. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Phospholipase A(2) (PLA(2), EC 3.1.1.4), a major component of snake venoms, specifically catalyzes the hydrolysis of fatty acid ester bonds at position 2 of 1,2-diacyl-sn-3-phosphoglycerides in the presence of calcium. This article reports the purification and biochemical/functional characterization of BmooTX-I, a new myotoxic acidic phospholipase A(2) from Bothrops moojeni snake venom. The purification of the enzyme was carried out through three chromatographic steps (ion-exchange on DEAE-Sepharose, molecular exclusion on Sephadex G-75 and hydrophobic chromatography on Phenyl-Sepharose). BmooTX-I was found to be a single-chain protein of 15,000 Da and pI 4.2. The N-terminal sequence revealed a high homology with other acidic Asp49 PLA(2)S from Bothrops snake venoms. It displayed a high phospholipase activity and platelet aggregation inhibition induced by collagen or ADP. Edema and myotoxicity in vivo were also induced by BmooTX-I. Analysis of myotoxic activity was carried out by optical and ultrastructural microscopy, demonstrating high levels of leukocytary infiltrate. Previous treatment of BmooTX-1 with BPB reduced its enzymatic and myotoxic activities, as well as the effect on platelet aggregation. Acidic myotoxic PLA(2)S from Bothrops snake venoms have been little explored and the knowledge of its structural and functional features will be able to contribute for a better understanding of their action mechanism regarding enzymatic and toxic activities. (C) 2008 Elsevier Ltd. All rights reserved.