882 resultados para Botany - Ecology
Resumo:
The Oxford Companion to Australian Gardens is the first comprehensive reference book to cover all aspects of Australian gardens, and the history of gardening and garden design in Australia. The book is comprised of over 400 thematic, bibliographic and place based entries, and is extensively illustrated and cross referenced to ensure ease of use and thorough coverage of the field. The Companion contributes to the understanding of gardens and gardening by including entries on designed landscapes, agriculture, architecture, art, botany, ecology, forestry, horticulture, landscape architecture, town planning and viticulture and will become the standard reference on the subject. Herbert,
Resumo:
The introduction of non-indigenous marine plankton species can have a considerable ecological and economic effect on regional systems. Their presence, however, can go unnoticed until they reach nuisance status and as a consequence few case histories exist containing information on their initial appearance and their spatio-temporal patterns. Here we report on the occurrence of the non-indigenous diatom Coscinodiscus wailesii in 1977 in the English Channel, its subsequent geographical spread into European shelf seas, and its persistence as a significant member of the diatom community in the north-east Atlantic from 1977-1995.
Resumo:
Sampling by the Continuous Plankton Recorder (CPR) over the NW Atlantic from 1960 to 2000 has enabled long-term studies of the larger components of the phytoplankton community, highlighting various changes, particularly during the 1990s. Analysis of an index of phytoplankton biomass, the Phytoplankton Colour Index (PCI) has revealed an increase over the past decade, most marked during the winter (December to February) months. Examination of the structure of the community using multiple linear-regression models indicates that the winter phytoplankton community composition has changed markedly in the 1990s compared to the 1960s. One phytoplankter, the dinoflagellate Ceratium arcticum (Cleve), has undergone dramatic changes in abundance during this period, with pronounced large winter blooms and decreased autumnal levels, and its contribution to the Phytoplankton Colour index values has increased significantly. Other dominant species in the phytoplankton community, both diatoms and dinoflagellates, did not show the same variations over the examined time period. It is suggested that the response of C. arcticum is probably a result of previously reported changes in stratification in the NW Atlantic, due to dynamic hydro-climatic (freshening and cooling) events.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The lack of effective tools has hampered our ability to assess the size, growth and ages of clonal plants. With Serenoa repens (saw palmetto) as a model, we introduce a novel analytical frame work that integrates DNA fingerprinting and mathematical modelling to simulate growth and estimate ages of clonal plants. We also demonstrate the application of such life-history information of clonal plants to provide insight into management plans. Serenoa is an ecologically important foundation species in many Southeastern United States ecosystems; yet, many land managers consider Serenoa a troublesome invasive plant. Accordingly, management plans have been developed to reduce or eliminate Serenoa with little understanding of its life history. Using Amplified Fragment Length Polymorphisms, we genotyped 263 Serenoa and 134 Sabal etonia (a sympatric non-clonal palmetto) samples collected from a 20 x 20 m study plot in Florida scrub. Sabal samples were used to assign small field-unidentifiable palmettos to Serenoa or Sabal and also as a negative control for clone detection. We then mathematically modelled clonal networks to estimate genet ages. Our results suggest that Serenoa predominantly propagate via vegetative sprouts and 10000-year-old genets maybe common, while showing no evidence of clone formation by Sabal. The results of this and our previous studies suggest that: (i) Serenoa has been part of scrub associations for thousands of years, (ii) Serenoa invasions are unlikely and (ii) once Serenoa is eliminated from local communities, its restoration will be difficult. Reevaluation of the current management tools and plans is an urgent task.
Resumo:
Angadenia berteroi is a tropical perennial subshrub of the pine rocklands with large yellow flowers that set very few fruits. My dissertation seeks to elucidate the factors that affect the reproductive fitness of Angadenia berteroi a native species of the south Florida pine rocklands. I provide novel information on the pollination biology of this native species. I also assess the effects of herbivory on growth and the reproductive success of A. berteroi. Finally, I elucidate how habitat fragmentation and quality are correlated with reproductive fitness of this native perennial plant. Using a novel experimental approach, I determined the most effective pollinator group. I used nylon fishing line of widths corresponding to proboscis diameter of the major groups of visitors to examine pollen removal and deposition. In the field, I estimated visitation frequency and efficacy of each pollinator type. Using potted plants, I exposed flowers to single visit from different types of pollinators to measure fruit set. I performed artificial defoliation with scissors on plants growing in the greenhouse to assess the effects of defoliation before flowering as well as during flowering. Additionally, I used structural equation modelling (SEM) to elucidate how A. berteroi reproductive fitness was affected by habitat fragmentation and quality. My experiments provide evidence that Angadenia berteroi is specialized for bee pollination; though butterflies, skippers and others also visit its flowers, A. berteroi is exclusively pollinated by two native bees of the South Florida pine rocklands . This research also demonstrated that herbivory by the oleander moth may have direct and indirect effects on Angadenia berteroi growth and reproductive success. The SEM results suggested that habitat quality (litter depth and subcanopy cover) may favor reproduction in native species of the South Florida pine rocklands that are properly maintained by periodic fires and exotic control. Insights from this threatened and charismatic species may provide impetus to properly manage remaining pine rocklands in South Florida for this and other endemic understory species.
Resumo:
Angadenia berteroi is a tropical perennial subshrub of the pine rocklands with large yellow flowers that set very few fruits. My dissertation seeks to elucidate the factors that affect the reproductive fitness of Angadenia berteroi a native species of the south Florida pine rocklands. I provide novel information on the pollination biology of this native species. I also assess the effects of herbivory on growth and the reproductive success of A. berteroi. Finally, I elucidate how habitat fragmentation and quality are correlated with reproductive fitness of this native perennial plant.^ Using a novel experimental approach, I determined the most effective pollinator group. I used nylon fishing line of widths corresponding to proboscis diameter of the major groups of visitors to examine pollen removal and deposition. In the field, I estimated visitation frequency and efficacy of each pollinator type. Using potted plants, I exposed flowers to single visit from different types of pollinators to measure fruit set. I performed artificial defoliation with scissors on plants growing in the greenhouse to assess the effects of defoliation before flowering as well as during flowering. Additionally, I used structural equation modelling (SEM) to elucidate how A. berteroi reproductive fitness was affected by habitat fragmentation and quality. ^ My experiments provide evidence that Angadenia berteroi is specialized for bee pollination; though butterflies, skippers and others also visit its flowers, A. berteroi is exclusively pollinated by two native bees of the South Florida pine rocklands . This research also demonstrated that herbivory by the oleander moth may have direct and indirect effects on Angadenia berteroi growth and reproductive success. The SEM results suggested that habitat quality (litter depth and subcanopy cover) may favor reproduction in native species of the South Florida pine rocklands that are properly maintained by periodic fires and exotic control. Insights from this threatened and charismatic species may provide impetus to properly manage remaining pine rocklands in South Florida for this and other endemic understory species.^
Resumo:
Mode of access: Internet.
Resumo:
We investigated aspects of the reproductive ecology of Ochna serrulata (Hochst.) Walp., an invasive plant in eastern Australia. O. serrulata drupes were similar in size to fleshy fruits of other local invasive plants, but showed some distinct differences in quality, with a very high pulp lipid content (32.8% of dry weight), and little sugar and water. Seeds were dispersed by figbirds, Sphecotheres viridis Vieillot, a locally abundant frugivore, and comprised between 10 and 50% of all non-Ficus spp. fruit consumed during October and November. The rate of removal of O. serrulata drupes was greater in bushland than suburban habitats, indicating that control in bushland habitats should be a priority, but also that suburban habitats are likely to act as significant seed sources for reinvasion of bushland. Germination occurred under all seed-processing treatments (with and without pulp, and figbird gut passage), suggesting that although frugivores are important for dispersal, they are not essential for germination. Recruitment of buried and surface-sown seed differed between greenhouse and field experiments, with minimal recruitment of surface-sown seed in the field. Seed persistence was low, particularly under field conditions, with 0.75% seed viability after 6 months and 0% at 12 months. This provides an opportunity to target control efforts in south-eastern Queensland in spring before fruit set, when there is predicted to be few viable seeds in the soil.
Resumo:
The studies presented in this thesis contribute to the understanding of evolutionary ecology of three major viruses threatening cultivated sweetpotato (Ipomoea batatas Lam) in East Africa: Sweet potato feathery mottle virus (SPFMV; genus Potyvirus; Potyviridae), Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus; Closteroviridae) and Sweet potato mild mottle virus (SPMMV; genus Ipomovirus; Potyviridae). The viruses were serologically detected and the positive results confirmed by RT-PCR and sequencing. SPFMV was detected in 24 wild plant species of family Convolvulacea (genera Ipomoea, Lepistemon and Hewittia), of which 19 species were new natural hosts for SPFMV. SPMMV and SPCSV were detected in wild plants belonging to 21 and 12 species (genera Ipomoea, Lepistemon and Hewittia), respectively, all of which were previously unknown to be natural hosts of these viruses. SPFMV was the most abundant virus being detected in 17% of the plants, while SPMMV and SPCSV were detected in 9.8% and 5.4% of the assessed plants, respectively. Wild plants in Uganda were infected with the East African (EA), common (C), and the ordinary (O) strains, or co-infected with the EA and the C strain of SPFMV. The viruses and virus-like diseases were more frequent in the eastern agro-ecological zone than the western and central zones, which contrasted with known incidences of these viruses in sweetpotato crops, except for northern zone where incidences were lowest in wild plants as in sweetpotato. The NIb/CP junction in SPMMV was determined experimentally which facilitated CP-based phylogenetic and evolutionary analyses of SPMMV. Isolates of all the three viruses from wild plants were genetically similar to those found in cultivated sweetpotatoes in East Africa. There was no evidence of host-driven population genetic structures suggesting frequent transmission of these viruses between their wild and cultivated hosts. The p22 RNA silencing suppressor-encoding sequence was absent in a few SPCSV isolates, but regardless of this, SPCSV isolates incited sweet potato virus disease (SPVD) in sweetpotato plants co-infected with SPFMV, indicating that p22 is redundant for synergism between SCSV and SPFMV. Molecular evolutionary analysis revealed that isolates of strain EA of SPFMV that is largely restricted geographically in East Africa experience frequent recombination in comparison to isolates of strain C that is globally distributed. Moreover, non-homologous recombination events between strains EA and C were rare, despite frequent co-infections of these strains in wild plants, suggesting purifying selection against non-homologous recombinants between these strains or that such recombinants are mostly not infectious. Recombination was detected also in the 5 - and 3 -proximal regions of the SPMMV genome providing the first evidence of recombination in genus Ipomovirus, but no recombination events were detected in the characterized genomic regions of SPCSV. Strong purifying selection was implicated on evolution of majority of amino acids of the proteins encoded by the analyzed genomic regions of SPFMV, SPMMV and SPCSV. However, positive selection was predicted on 17 amino acids distributed over the whole the coat protein (CP) in the globally distributed strain C, as compared to only 4 amino acids in the multifunctional CP N-terminus (CP-NT) of strain EA largely restricted geographically to East Africa. A few amino acid sites in the N-terminus of SPMMV P1, the p7 protein and RNA silencing suppressor proteins p22 and RNase3 of SPCSV were also submitted to positive selection. Positively selected amino acids may constitute ligand-binding domains that determine interactions with plant host and/or insect vector factors. The P1 proteinase of SPMMV (genus Ipomovirus) seems to respond to needs of adaptation, which was not observed with the helper component proteinase (HC-Pro) of SPMMV, although the HC-Pro is responsible for many important molecular interactions in genus Potyvirus. Because the centre of origin of cultivated sweetpotato is in the Americas from where the crop was dispersed to other continents in recent history (except for the Australasia and South Pacific region), it would be expected that identical viruses and their strains occur worldwide, presuming virus dispersal with the host. Apparently, this seems not to be the case with SPMMV, the strain EA of SPFMV and the strain EA of SPCSV that are largely geographically confined in East Africa where they are predominant and occur both in natural and agro-ecosystems. The geographical distribution of plant viruses is constrained more by virus-vector relations than by virus-host interactions, which in accordance of the wide range of natural host species and the geographical confinement to East Africa suggest that these viruses existed in East African wild plants before the introduction of sweetpotato. Subsequently, these studies provide compelling evidence that East Africa constitutes a cradle of SPFMV strain EA, SPCSV strain EA, and SPMMV. Therefore, sweet potato virus disease (SPVD) in East Africa may be one of the examples of damaging virus diseases resulting from exchange of viruses between introduced crops and indigenous wild plant species. Keywords: Convolvulaceae, East Africa, epidemiology, evolution, genetic variability, Ipomoea, recombination, SPCSV, SPFMV, SPMMV, selection pressure, sweetpotato, wild plant species Author s Address: Arthur K. Tugume, Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Latokartanonkaari 7, P.O Box 27, FIN-00014, Helsinki, Finland. Email: tugume.arthur@helsinki.fi Author s Present Address: Arthur K. Tugume, Department of Botany, Faculty of Science, Makerere University, P.O. Box 7062, Kampala, Uganda. Email: aktugume@botany.mak.ac.ug, tugumeka@yahoo.com
Resumo:
Winter is a significant period for the seasonality of northern plants, but is often overlooked when studying the interactions of plants and their environment. This study focuses on the effects of overwintering conditions, including warm winter periods, snow, and snowmelt on boreal and sub-Arctic field layer plants. Wintertime photosynthesis and related physiological factors of evergreen dwarf shrubs, particularly of Vaccinium vitis-idaea, are emphasised. The work combines experiments both in the field and in growth chambers with measurements in natural field conditions. Evergreen dwarf shrubs are predominantly covered by snow in the winter. The protective snow cover provides favourable conditions for photosynthesis, especially during the spring before snowmelt. The results of this study indicate that photosynthesis occurs under the snow in V. vitis-idaea. The light response of photosynthesis determined in field conditions during the period of snow cover shows that positive net CO2 exchange is possible under the snow in the prevailing light and temperature. Photosynthetic capacity increases readily during warm periods in winter and the plants are thus able to replenish carbohydrate reserves lost through respiration. Exposure to low temperatures in combination with high light following early snowmelt can set back photosynthesis as sustained photoprotective measures are activated and photodamage begins to build up. Freezing may further decrease the photosynthetic capacity. The small-scale distribution of many field layer plants, including V. vitis-idaea and other dwarf shrubs, correlates with the snow distribution in a forest. The results of this study indicate that there are species-specific differences in the snow depth affinity of the field and ground layer species. Events and processes taking place in winter can have a profound effect on the overall performance of plants and on the interactions between plants and their environment. Understanding the processes involved in the overwintering of plants is increasingly important as the wintertime climate in the north is predicted to change in the future.
Resumo:
This annotated bibliography of selected literature on Olney's three7square (Scirpus olneyi Gray )compiled basically for two reasons: 1) to assist a task force in its pursuit of an explanation for the substantial reduction in marsh acreage at the Blackwater National Wildlife Refuge in Dorchester County, Maryland, and 2) to serve as the author's foundation for the initiation of ecological research on this species as partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Botany Department of the University of Maryland. Both purposes are directly related in that the Author's research will be of use to the task force, along I with its other technical information and research results, in under-standing and possibly correcting the marshland loss problem at the Refuge. (PDF contains 100 pages)