1000 resultados para Boron adsorption


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron adsorption by soil is the main phenomenon that affects its availability to plants. This, the present study investigated the effect of liming on B adsorption by lowland soils of Parana State, and to correlate these values with the physical and chemical properties of the soils. Surface samples of three lowland soils [Gleissolo Haplico (GX), Plintossolo Haplico (FX) and Cambissolo Haplico (CX)], with different origin material and physicochemical properties were used. Samples with or without liming application were incubated during 60 days. Boron adsorption was accomplished by shaking 4.0g soil samples, for 24 h, with 20 mL of 0.01 mol L-1 CaCl2 solution containing different concentrations of B (0, 1, 2, 4, 8 and 16 mg L-1). Sorption was fitted to non-linear form of the Langmuir adsorption isotherm. The adsorption isotherms indicated that the B adsorption increased with its increasing concentration in the equilibrium solution. Maximum adsorption capacity of B ranged from 3.0 to 13.9 mg kg(-1) (without liming) and 14.7 to 35.7 mg kg(-1) (with liming). Liming increased the amount of adsorbed B in Gleissolo Haplico and Plintossolo Haplico soils, although the bonding energy has decreased. The amount of adsorbed B by Cambissolo Haplico soil was not affected by liming application. The most important soil properties affecting the B adsorption in lowland soils were pH, clay content, exchangeable aluminum and iron oxide contents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporary B deficiency can be triggered by liming of acid soils because of increased B adsorption at higher soil pH. Plants respond directly to the activity of B in soil solution and only indirectly to B adsorbed on soil constituents. Because the range between deficient and toxic B concentration is relatively narrow, this poses difficulty in maintaining appropriate B levels in soil solution. Thus, knowledge of the chemical behavior of B in the soil is particularly important. The present study investigated the effect of soil pH on B adsorption in four soils of Parana State, and to correlate these values with the physical and chemical properties of the soils. Surface samples were taken from a Rhodic Hapludox, Arenic Hapludalf, Arenic Hapludult, and one Typic Usthorthent. To evaluate the effect of pH on B adsorption, subsamples soil received the application of increasing rates of calcium carbonate. Boron adsorption was accomplished by shaking 2.0 g soil, for 24 h, with 20 mL of 0.01 mol L-1 NaCl solution containing different concentrations (0.0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0, and 4.0 mg B L-1). Sorption was fitted to non-linear form of the Langmuir adsorption isotherm. Boron adsorption increased as concentration increased. Boron adsorption was dependent on soil pH, increasing as a function of pH in the range between 4.6 and 7.4, although the bonding energy has decreased. Maximum adsorption capacity (MAC) of B was observed in the Arenic Hapludalf (49.8 mg B kg(-1) soil) followed by Arenic Hapludult (22.5 mg kg(-1)), Rhodic Hapludox (17.4 mg kg(-1)), and Typic Usthorthent (7.0 mg kg(-1)). The organic matter content, clay content, and aluminum oxide content (Al2O3) were the soils properties that affecting the B adsorption on Parana soils.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Integrated Ocean Drilling Program Expedition 308 (IODP308) drilled normal-pressured sediments from the Brazos-Trinity Basin IV and over-pressured sediments from the Ursa Basin on the northern slope of the Gulf of Mexico. The interstitial water samples from the normal-pressured basin show B concentrations and B isotopic compositions ranging from 255 to 631 µM (0.6 to 1.5 times of seawater value) and from +29.1 to +42.7 per mil (relative to NIST SRM 951), respectively. A wider range is observed both for B concentrations (292 to 865 µM, 0.7 to 2.1 times of seawater value) and d11B values (+25.5 to +43.2 per mil) of the interstitial water in the over-pressured basin. The down-core distribution of B concentrations and d11B values in the interstitial waters are sensitive tracers for assessing various processes occurring in the sediment column, including boron adsorption/desorption reactions involving clay minerals and organic matter in sediments as well as fluid migration and mixing in certain horizons and in the sediment column. In the normal-pressured basin adsorption/desorption reactions in shallow sediments play the major role in controlling the B content and B isotopic composition of the interstitial water. In contrast, multiple processes affect the B content and d11B of the interstitial water in the over-pressured Ursa Basin. There, the stratigraphic level of the maxima of B and d11B correspond to seismic reflectors. The intruded fluids along the seismic reflector boundary from high to low-topography mix with local interstitial water. Fluid flow is inferred in the Blue Unit (a coarse sandstone layer, connecting the high- to low-pressured region) from the freshening of interstitial water in Ursa Basin Site U1322, and upward flow by the overpressure expels fluid from the overburden above the Blue Unit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar a adsorção e a lixiviação do boro em Latossolo Vermelho-Amarelo distrófico, cultivado com soja, em conseqüência das doses de boro e da calagem. Foram analisadas amostras de um solo do Estado do Mato Grosso, cultivado com soja durante três anos, com doses de 0, 1,5, 3, 4,5, 6, 7,5 e 9 Mg ha-1 de calcário, e 0, 1, 3, 5, 7 e 10 kg ha-1 de boro, aplicados no primeiro ano de cultivo. Foram determinadas isotermas de adsorção de boro em função da calagem e do tempo de cultivo, assim como a lixiviação em função da calagem e da adubação boratada. No caso da calagem, mesmo com doses relativamente altas de calcário, a adsorção de boro pelo solo é muito alta apenas no ano de aplicação do corretivo, e diminui significativamente com o tempo. No entanto, a lixiviação de boro guarda estreita relação com o teor do nutriente no solo e com a dose do nutriente que é aplicada, mas é pouco influenciada pela calagem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Capturing and sequestering carbon dioxide (CO2) can provide a route to partial mitigation of climate change associated with anthropogenic CO2 emissions. Here we report a comprehensive theoretical study of CO2 adsorption on two phases of boron, α-B12 and γ-B28. The theoretical results demonstrate that the electron deficient boron materials, such as α-B12 and γ-B28, can bond strongly with CO2 due to Lewis acid-base interactions because the electron density is higher on their surfaces. In order to evaluate the capacity of these boron materials for CO2 capture, we also performed calculations with various degrees of CO2 coverage. The computational results indicate CO2 capture on the boron phases is a kinetically and thermodynamically feasible process, and therefore from this perspective these boron materials are predicted to be good candidates for CO2 capture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, the capture and storage of CO2 have attracted research interest as a strategy to reduce the global emissions of greenhouse gases. It is crucial to find suitable materials to achieve an efficient CO2 capture. Here we report our study of CO2 adsorption on boron-doped C60 fullerene in the neutral state and in the 1e−-charged state. We use first principle density functional calculations to simulate the CO2 adsorption. The results show that CO2 can form weak interactions with the BC59 cage in its neutral state and the interactions can be enhanced significantly by introducing an extra electron to the system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

(i) The electronic and structural properties of boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by ab initio total energy calculations. In (i) we find that the structural deformations are very localized around the boron substitutional sites, and in accordance with previous studies (Endo et al 2001 J. Appl. Phys. 90 5670) there is an increase of the electronic density of states near the Fermi level. Our simulated scanning tunneling microscope (STM) images, for occupied states, indicate the formation of bright (triangular) spots lying on the substitutional boron (center) and nearest-neighbor carbon (edge) sites. Those STM images are attributed to the increase of the density of states within an energy interval of 0.5 eV below the Fermi level. For a boron concentration of similar to 2.4%, we find that two boron atoms lying on the opposite sites of the same hexagonal ring (B1-B2 configuration) represents the energetically most stable configuration, which is in contrast with previous theoretical findings. Having determined the energetically most stable configuration for substitutional boron atoms on graphene sheets, we next considered the hydrogen adsorption process as a function of the boron concentration, (ii). Our calculated binding energies indicate that the C-H bonds are strengthened near boron substitutional sites. Indeed, the binding energy of hydrogen adatoms forming a dimer-like structure on the boron doped B1-B2 graphene sheet is higher than the binding energy of an isolated H(2) molecule. Since the formation of the H dimer-like structure may represent the initial stage of the hydrogen clustering process on graphene sheets, we can infer that the formation of H clusters is quite likely not only on clean graphene sheets, which is in consonance with previous studies (Hornekaer et al 2006 Phys. Rev. Lett. 97 186102), but also on B1-B2 boron doped graphene sheets. However, for a low concentration of boron atoms, the formation of H dimer structures is not expected to occur near a single substitutional boron site. That is, the formation (or not) of H clusters on graphene sheets can be tuned by the concentration of substitutional boron atoms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Surface interaction is extremely important to both fundamental research and practical application. Physisorption can induce shape and structural distortion (i.e., conformational changes) in macromolecular and biomolecular adsorbates, but such phenomena have rarely been observed on adsorbents. Here, it is demonstrated theoretically and experimentally that atomically thin boron nitride (BN) nanosheets as an adsorbent experience conformational changes upon surface adsorption of molecules, increasing adsorption energy and efficiency. The study not only provides new perspectives on the strong adsorption capability of BN nanosheets and many other two-dimensional (2D) nanomaterials but also opens up possibilities for many novel applications. For example, it is demonstrated that BN nanosheets with the same surface area as bulk hexagonal BN particles are more effective in purification and sensing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selective separation of nitrogen (N2) from methane (CH4) is highly significant in natural gas purification, and it is very challenging to achieve this because of their nearly identical size (the molecular diameters of N2 and CH4 are 3.64 Å and 3.80 Å, respectively). Here we theoretically study the adsorption of N2 and CH4 on B12 cluster and solid boron surfaces a-B12 and c-B28. Our results show that these electron-deficiency boron materials have higher selectivity in adsorbing and capturing N2 than CH4, which provides very useful information for experimentally exploiting boron materials for natural gas purification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing concerns about the atmospheric CO2 concentration and its impact on the environment are motivating researchers to discover new materials and technologies for efficient CO2 capture and conversion. Here, we report a study of the adsorption of CO2, CH4, and H2 on boron nitride (BN) nanosheets and nanotubes (NTs) with different charge states. The results show that the process of CO2 capture/release can be simply controlled by switching on/off the charges carried by BN nanomaterials. CO2 molecules form weak interactions with uncharged BN nanomaterials and are weakly adsorbed. When extra electrons are introduced to these nanomaterials (i.e., when they are negatively charged), CO2 molecules become tightly bound and strongly adsorbed. Once the electrons are removed, CO2 molecules spontaneously desorb from BN absorbents. In addition, these negatively charged BN nanosorbents show high selectivity for separating CO2 from its mixtures with CH4 and/or H2. Our study demonstrates that BN nanomaterials are excellent absorbents for controllable, highly selective, and reversible capture and release of CO2. In addition, the charge density applied in this study is of the order of 1013 cm–2 of BN nanomaterials and can be easily realized experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concern about the increasing atmospheric CO2 concentration and its impact on the environment has led to increasing attention directed toward finding advanced materials and technologies suited for efficient CO2 capture, storage and purification of clean-burning natural gas. In this letter, we have performed comprehensive theoretical investigation of CO2, N2, CH4 and H2 adsorption on B2CNTs. Our study shows that CO2 molecules can form strong interactions with B2CNTs with different charge states. However, N2, CH4 and H2 can only form very weak interactions with B2CNTs. Therefore, the study demonstrates B2CNTs could sever as promising materials for CO2 capture and gas separation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Searching for efficient solid sorbents for CO2 adsorption and separation is important for developing emergent carbon reduction and natural gas purification technology. This work, for the first time, has investigated the adsorption of CO2 on newly experimentally realized cage-like B40 fullerene (Zhai et al., 2014) based on density functional theory calculations. We find that the adsorption of CO2 on B40 fullerene involves a relatively large energy barrier (1.21 eV), however this can be greatly decreased to 0.35 eV by introducing an extra electron. A practical way to realize negatively charged B40 fullerene is then proposed by encapsulating a Li atom into the B40 fullerene (Li@B40). Li@B40 is found to be highly stable and can significantly enhance both the thermodynamics and kinetics of CO2 adsorption, while the adsorptions of N2, CH4 and H2 on the Li@B40 fullerene remain weak in comparison. Since B40 fullerene has been successfully synthesized in a most recent experiment, our results highlight a new promising material for CO2 capture and separation for future experimental validation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural gas (the main component is methane) has been widely used as a fuel and raw material in industry. Removal of nitrogen (N2) from methane (CH4) can reduce the cost of natural gas transport and improve its efficiency. However, their extremely similar size increases the difficulty of separating N2 from CH4. In this study, we have performed a comprehensive investigation of N2 and CH4 adsorption on different charge states of boron nitride (BN) nanocage fullerene, B36N36, by using a density functional theory approach. The calculational results indicate that B36N36 in the negatively charged state has high selectivity in separating N2 from CH4. Moreover, once the extra electron is removed from the BN nanocage, the N2 will be released from the material. This study demonstrates that the B36N36 fullerene can be used as a highly selective and reusable material for the separation of N2 from CH4. The study also provides a clue to experimental design and application of BN nanomaterials for natural gas purification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of gas molecule adsorption is investigated on the density of states of (9,0) zigzag boron nitride nanotube within a random tight-binding Hamiltonian model. The Green function approach and coherent potential approximation have been implemented. The results show that the adsorption of carbon dioxide gas molecules by boron atoms only leads to a donor type semiconductor while the adsorption by nitrogen atoms only leads to an acceptor. Since the gas molecules are adsorbed by both boron and nitrogen atoms, a reduction of the band gap is found. In all cases, increasing the gas concentration causes an increase in the height of the peaks in the band gap. This is due to an increasing charge carrier concentration induced by adsorbed gas molecules.