899 resultados para Bone-to-implant contact
Resumo:
Implants made of commercially pure titanium (cpTi) are widely and successfully used in dentistry. For certain indications, diameter-reduced Ti alloy implants with improved mechanical strength are highly desirable. The aim was to compare the osseointegration of titanium-zirconium (TiZr) and cpTi implants with a modified sandblasted and acid-etched (SLActive) surface and with a Ti6Al4V alloy that was sand-blasted and acid-washed. Cylindrical implants with two, 0.75 mm deep, circumferential grooves were placed in the maxilla of miniature pigs and allowed to heal for 1, 2, 4 and 8 weeks. Undecalcified toluidine blue-stained ground sections were produced. Surface topography, area fraction of tissue components, and bone-to-implant contact (BIC) were determined. All materials showed significantly different surface roughness parameters. The amount of new bone within the implant grooves increased over time, without significant differences between materials. However, BIC values were significantly related to the implant material and the healing period. For TiZr and cpTi implants, the BIC increased over time, reaching values of 59.38 % and 76.15 % after 2 weeks, and 74.50 % and 84.67 % after 8 weeks, respectively. In contrast, the BIC for Ti6Al4V implants peaked with 42.29 % after 2 weeks followed by a decline to 28.60 % at 8 weeks. Significantly more surface was covered by multinucleated giant cells on Ti6Al4V implants after 4 and 8 weeks. In conclusion, TiZr and cpTi implants showed faster osseointegration than Ti6Al4V implants. Both chemistry and surface topography might have influenced the results. The use of diameter-reduced TiZr implants in more challenging clinical situations warrants further documentation in long-term clinical studies.
Bone response to loaded implants with non-matching implant-abutment diameters in the canine mandible
Resumo:
BACKGROUND: One way to evaluate various implant restorations is to measure the amount of bone change that occurs at the crestal bone. The objective of this study was to histologically evaluate the alveolar bone change around a bone-level, non-matching implant-abutment diameter configuration that incorporated a horizontal offset and a Morse taper internal connection. METHODS: The study design included extraction of all mandibular premolars and first molars in five canines. After 3 months, 12 dental implants were placed at three levels in each dog: even with the alveolar crest, 1 mm above the alveolar crest, and 1 mm below the alveolar crest. The implants were submerged on one side of the mandible. On the other side, healing abutments were exposed to the oral cavity (non-submerged). Gold crowns were attached 2 months after implant placement. The dogs were sacrificed 6 months postloading, and specimens were processed for histologic and histometric analyses. RESULTS: Evaluation of the specimens indicated that the marginal bone remained near the top of the implants under submerged and non-submerged conditions. The amount of bone change for submerged implants placed even with, 1 mm below, and 1 mm above the alveolar crest was -0.34, -1.29, and 0.04 mm, respectively (negative values indicate bone loss). For non-submerged implants, the respective values were -0.38, -1.13, and 0.19 mm. For submerged and non-submerged implants, there were significant differences in the amount of bone change among the three groups (P <0.05). The percentage of bone-to-implant contact for submerged implants was 73.3%, 71.8%, and 71.5%. For non-submerged implants, the respective numbers were 73.2%, 74.5%, and 76%. No significant differences occurred with regard to the percentage of bone contact. CONCLUSIONS: Minimal histologic bone loss occurred when dental implants with non-matching implant-abutment diameters were placed at the bone crest and were loaded for 6 months in the canine. The bone loss was significantly less (five- to six-fold) than that reported for bone-level implants with matching implant-abutment diameters (butt-joint connections).
Resumo:
OBJECTIVE To evaluate the suitability of a minipig model for the study of bone healing and osseointegration of dental implants following bone splitting and expansion of narrow ridges. MATERIAL AND METHODS In four minipigs, the mandibular premolars and first molars were extracted together with removal of the buccal bone plate. Three months later, ridge splitting and expansion was performed with simultaneous placement of three titanium implants per quadrant. On one side of the mandible, the expanded bone gap between the implants was filled with an alloplastic biphasic calcium phosphate (BCP) material, while the gap on the other side was left unfilled. A barrier membrane was placed in half of the quadrants. After a healing period of 6 weeks, the animals were sacrificed for histological evaluation. RESULTS In all groups, no bone fractures occurred, no implants were lost, all 24 implants were osseointegrated, and the gap created by bone splitting was filled with new bone, irrespective of whether BCP or a barrier membrane was used. Slight exposure of five implants was observed, but did not lead to implant loss. The level of the most coronal bone-to-implant contact varied without being dependent on the use of BCP or a barrier membrane. In all groups, the BCP particles were not present deep in the bone-filled gap. However, BCP particles were seen at the crestal bone margin, where they were partly integrated in the new bone. CONCLUSIONS This new minipig model holds great promise for studying experimental ridge splitting/expansion. However, efforts must be undertaken to reduce implant exposure and buccal bone resorption.
Resumo:
OBJECTIVE The first objective of this pilot study was to evaluate the impact of the hydrophilicity on the early phases of osseointegration. The second objective was to compare two hydrophilic implant surfaces with different geometries, surface roughness, and technologies achieving hydrophilicity. MATERIAL AND METHODS Twelve weeks after extraction, all four quadrants of nine minipigs received three dental implants, alternating between hydrophilic microrough surfaces (INICELL and SLActive) and a conventional hydrophobic microrough surface. After 5, 10, and 15 days of submerged healing, ground sections were prepared and subjected to histologic and histomorphometric analysis. RESULTS The histologic analysis revealed a similar healing pattern among the hydrophilic and hydrophobic implant surfaces, with extensive bone formation occurring between day 5 and day 10. With BIC values of greater than 50% after 10 days, all examined surfaces indicated favorable osseointegration at this very early point in healing. At day 15, the mean new bone-to-implant contact (newBIC) of one hydrophilic surface (INICELL; 55.8 ± 14.4%) was slightly greater than that of the hydrophobic microrough surface (40.6 ± 20.2%). At day 10 and day 15, an overall of 21% of the implants had to be excluded from analysis due to inflammations primarily caused by surgical complications. CONCLUSION Substantial bone apposition occurs between day 5 and day 10. The data suggest that the hydrophilic surface can provoke a slight tendency toward increased bone apposition in minipigs after 15 days. A direct comparison of two hydrophilic surfaces with varying geometries is of limited relevance.
Resumo:
Background Several studies have reported certain bone morphogenic proteins (BMPs) to have positive effects on bone generation Although some investigators have studied the effects of human recombinant BMP (rhBMP-2) in sinus augmentation in sheep, none of these studies looked at the placement of implants at the time of sinus augmentation Furthermore, no literature could be found to report on the impact that different implant systems, as well as the positioning of the implants had on bone formation if rhBMP-2 was utilized in sinus-lift procedures Purpose The aim of this study was to compare sinus augmentation with rhBMP-2 on a poly-D, L-lactic-co-glycolic acid gelatine (PLPG) sponge with sinus augmentation with autologous pelvic cancellous bone in the maxillary sinus during the placement of different dental Implants Materials and methods Nine adult female sheep were submitted to bilateral sinus-floor elevation In one side (test group) the sinus lift was performed with rhBMP-2 on a PLPG-sponge, while the contralateral side served as the control by using cancellous bone from the iliac crest Three different implants (Branemark (R), 31 (R) and Straumann (R)) were inserted either simultaneously with the sinus augmentation or as a two staged procedure 6 weeks later The animals were sacrificed at 6 and 12 weeks for histological and histomorphometrical evaluations during which bone-to-implant contact (BIC) and bone density (BD) were evaluated Results BD and BIC were significantly higher at 12 weeks in the test group if the Implants were placed at the time of the sinus lift (p < 0 05) No difference was observed between the different implant systems or positions Conclusions The use of rhBMP-2 with PLPG-sponge increased BIC as well as BD in the augmented sinuses if compared to autologous bone Different implant systems and positions of the implants had no effect on BIC or BD (C) 2010 European Association for Cranio-Maxillo-Facial Surgery
Resumo:
Aim To study osseointegration and bone-level changes at implants installed using either a standard or a reduced diameter bur for implant bed preparation. Material and methods In six Labrador dogs, the first and second premolars were extracted bilaterally. Subsequently, mesial roots of the first molars were endodontically treated and distal roots, including the corresponding part of the crown, were extracted. After 3 months of healing, flaps were elevated and recipient sites were prepared in all experimental sites. The control site was prepared using a standard procedure, while the test site was prepared using a drill with a 0.2 mm reduced diameter than the standard one used in the contra-lateral side. After 4 months of healing, the animals were euthanized and biopsies were obtained for histological processing and evaluation. Results With the exception of one implant that was lost, all implants were integrated in mineralized bone. The alveolar crest underwent resorption at control as well as at test sites (buccal aspect similar to 1 mm). The most coronal contact of bone-to-implant was located between 1.2 and 1.6 mm at the test and between 1.3 and 1.7 mm at the control sites. Bone-to-implant contact percentage was between 49% and 67%. No statistically significant differences were found for any of the outcome variables. Conclusions After 4 months of healing, lateral pressure to the implant bed as reflected by higher insertion torques (36 vs. 15 N cm in the premolar and 19 vs. 7 N cm in the molar regions) did not affect the bone-to-implant contact. To cite this article:Pantani F, Botticelli D, Garcia IR Jr., Salata LA, Borges GJ, Lang NP. Influence of lateral pressure to the implant bed on osseointegration: an experimental study in dogs.Clin. Oral Impl. Res. 21, 2010; 1264-1270.doi: 10.1111/j.1600-0501.2009.01941.x.
Resumo:
Purpose: The aim of the present study was to investigate the healing, integration, and maintenance of autogenous onlay bone grafts and implant osseointegration either loaded in the early or the delayed stages. Materials and Methods: A total of 5 male clogs received bilateral blocks of onlay bone grafts harvested from the contralateral alveolar ridge of the mandible. On one side, the bone block was secured by 3 dental implants (3.5 mm x 13.0 mm, Osseospeed; Astra Tech AB, Molndal, Sweden). Two implants at the extremities of the graft were loaded 2 clays after installation by abutment connection and prosthesis (simultaneous implant placement group); the implant in the middle remained unloaded and served as the control. On the other side, the block was fixed with 2 fixation screws inserted in the extremities of the graft. Four weeks later, the fixation screws were replaced with 3 dental implants. The loading procedure (delayed implant placement group) was performed 2 clays later, as described for the simultaneous implant placement sites. The animals were sacrificed 12 weeks after the grafting procedure. Implant stability was measured through resonance frequency analysis. The bone volume and density were assessed on computed tomography. The bone to implant contact and bone area in a region of interest were evaluated on histologic slides. Results: The implant stability quotient showed statistical significance in favor of the delayed loaded grafts (P=.001). The bone-to-implant contact (P=.008) and bone area in a region of interest (P=0.005) were significantly greater in the delayed group. Nevertheless, no difference was found in terms of graft volume and density between the early loaded and delayed-loaded approaches. Conclusions: The protocol in which the implant and bone graft were given delayed loading allows for effective quality of implant osseointegration and stabilization, with healing and remodeling occurring in areas near the implant resulting in denser bone architecture. (C) 2010 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Sing 68:825-832, 2010
Resumo:
Background: This study evaluated the effects of diclofenac sodium and meloxicam on peri-implant bone healing. Methods: Thirty male rats were divided into three groups: the control group (CG) received no drug; the diclofenac sodium group (DSG) received 1.07 mg/kg twice a day for 5 days; and the meloxicam group (MG) received 0.2 mg/kg daily for 5 days. A screw-shaped titanium implant was placed in the tibia. Fluorochromes, oxytetracycline (OxT), calcein (CA), and alizarin (AL), were injected at 7, 14, and 21 days, respectively, after implantation, and the animals were sacrificed 28 days after implant placement. The percentages of OxT-, CA-, and AL-labeled bone as well as the percentages of bone-to-implant contact (BIC), cortical bone area (CBA), and trabecular bone area (TBA) within the implant threads were evaluated. Results: Bone healing was delayed in the DSG during the first 14 days after implant placement (OxT-labeled bone: DSG: 5.3% +/- 7.3% versus CG: 13.2% +/- 9.8%, P= 0.002, and versus MG: 14.4% +/- 13.1%, P = 0.05). The percentages of BIC (DSG: 49.6% +/- 21.9%; MG: 67.1% +/- 22.8%; and CG: 68.1% +/- 22.8%) and CBA (DSG: 63.7% +/- 21.2%; MG: 82.7% +/- 12.4%; CG: 84.9% +/- 10.6%) were lower in the DSG compared to the MG and CG (P<0.001). The percentage of TBA was significantly greater in the DSG compared to the MG and CG (DSG: 36.3% +/- 21.2% versus MG: 17.3% +/- 12.7% and versus CG: 15.1% +/- 10.6%; P<0.001). Conclusion: Diclofenac sodium seemed to delay peri-implant bone healing and to decrease BIC, whereas meloxicam had no negative effect on peri-implant bone healing.
Resumo:
Aim: To describe the early healing processes around the implants installed after elevation of the sinus mucosa applying the lateral access technique without the use of grafting material.Material and methods: Immediately after the elevation of the maxillary sinus Schneiderian membrane by the lateral approach in eight monkeys, implants were installed without the use of grafting material. The healing of the tissue around the implants was evaluated after 4, 10, 20 and 30 days. Ground sections were prepared and analyzed histologically.Results: After 4 days of healing, the formation of coagulum and provisional matrix was documented within the elevated area. At 10-day interval, sprouts of woven bone were in continuity with the parent bone, and partly in contact with the implant surface at the base of the augmented area. While bone-to-implant contact increased after 20 and 30 days, the area underneath the Schneiderian membrane appeared reduced in volume and condensed toward the apex of the implants. The sinus mucosa was to some extent collapsed onto the implant surface and on the newly formed bone.Conclusions: The void initially occupied by the coagulum after sinus membrane elevation shrank substantially during the observation period. A lack of influence of the Schneiderian membrane in bone formation apical to implants was documented in the early phase of healing.
Resumo:
Purpose: It is unknown whether different micro gap configurations can cause different pen-implant bone reactions. Therefore, this study sought to compare the peri-implant bone morphologies of two implant systems with different implant-abutment connections. Materials and Methods: Three months after mandibular tooth extractions in six mongrel dogs, two oxidized screw implants with an external-hex connection were inserted (hexed group) on one side, whereas on the contralateral side two grit-blasted screw implants with an internal Morse-taper connection (Morse group) were placed. on each side, one implant was inserted level with the bone (equicrestal) and the second implant was inserted 1.5 mm below the bony crest (subcrestal). Healing abutments were inserted immediately after implant placement. Three months later, the peri-implant bone levels, the first bone-to-implant contact points, and the width and steepness of the peri-implant bone defects were evaluated histometrically. Results: All 24 implants osseointegrated clinically and histologically. No statistically significant differences between the hexed group and Morse group were detected for either the vertical position for peri-implant bone levels (Morse equicrestal -0.16 mm, hexed equicrestal -0.22 mm, Morse subcrestal 1.50 mm, hexed subcrestal 0.94 mm) or for the first bone-to-implant contact points (Morse equicrestal -2.08 mm, hexed equicrestal -0.98 mm, Morse subcrestal -1.26 mm, hexed subcrestal -0.76 mm). For the parameters width (Morse equicrestal -0.15 mm, hexed equicrestal -0.59 mm, Morse subcrestal 0.28 mm, hexed subcrestal -0.70 mm) and steepness (Morse equicrestal 25.27 degree, hexed equicrestal 57.21 degree, Morse subcrestal 15.35 degree, hexed subcrestal 37.97 degree) of the pen-implant defect, highly significant differences were noted between the Morse group and the hexed group. Conclusion: Within the limits of this experiment, it can be concluded that different microgap configurations influence the size and shape of the peri-implant bone defect in nonsubmerged implants placed both at the crest and subcrestally. INT J ORAL MAXILLOFAC IMPLANTS 2010;25:540-547
Resumo:
Background: The aim of the present study was to evaluate clinical and radiographic changes that occur around dental implants inserted in different levels in relation to crestal bone under different restoration protocols.Methods: Thirty-six implants were inserted in the edentulous mandible of six mongrel dogs. Each implant was assigned to an experimental group according to the distance from the top of the implant to the crestal bone: Bone Level (at crestal bone level), Minus 1 (1 mm below crestal bone), or Minus 2 (2 mm below crestal bone). Each hemimandible was submitted to a restoration protocol: conventional (prosthesis was installed 120 days after implant placement, including 30 days with healing cap) or immediate (prosthesis was installed 24 hours after implant placement). Fixed partial prostheses were installed bilaterally in the same day. After 90 days, clinical and radiographic parameters were evaluated.Results: As long as the implants were inserted in more apical positions, the first bone-to-implant contact (fBIC) was positioned more apically (P<0.05). However, the apical positioning of the implants did not influence the ridge loss or the position of the soft tissue margin (PSTM) (P>0.05). In addition, in immediately restored sites, the PSTM was located significantly more coronally than that in conventionally restored sites (P=0.02).Conclusions: Despite the more apical positioning of the fBIC, the height of the peri-implant soft tissues and ridge was not jeopardized. Moreover, the immediate restoration protocol was beneficial to the maintenance of the PSTM. Further studies are suggested to evaluate the significance of these results in longer healing periods.
Resumo:
This study investigated the effect of an Argon-based atmospheric pressure plasma (APP) surface treatment operated chairside at atmospheric pressure conditions applied immediately prior to dental implant placement in a canine model. Surfaces investigated comprised: rough titanium surface (Ti) and rough titanium surface + Argon-based APP (Ti-Plasma). Surface energy was characterized by the Owens-Wendt-Rabel-Kaelble method and chemistry by X-ray photoelectron spectroscopy (XPS). Six adult beagles dogs received two plateau-root form implants (n = 1 each surface) in each radii, providing implants that remained 1 and 3 weeks in vivo. Histometric parameters assessed were bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). Statistical analysis was performed by Kruskall-Wallis (95% level of significance) and Dunn's post-hoc test. The XPS analysis showed peaks of Ti, C, and O for the Ti and Ti- Plasma surfaces. Both surfaces presented carbon primarily as hydrocarbon (C?C, C?H) with lower levels of oxidized carbon forms. The Ti-Plasma presented large increase in the Ti (+11%) and O (+16%) elements for the Ti- Plasma group along with a decrease of 23% in surface-adsorbed C content. At 1 week no difference was found in histometric parameters between groups. At 3 weeks significantly higher BIC (>300%) and mean BAFO (>30%) were observed for Ti-Plasma treated surfaces. From a morphologic standpoint, improved interaction between connective tissue was observed at 1 week, likely leading to more uniform and higher bone formation at 3 weeks for the Ti-Plasma treated implants was observed. (C) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 2012.
Resumo:
The present study evaluated the effect of platelet-rich plasma (PRP) on pen-implant bone healing. A total of 9 mongrel dogs received 36 dental implants with sandblasted acid-etched surface in lower jaws in a split-mouth design: in the PRP group (n = 18 implants) the implants were placed in association with PRP, and in the control group (n = 18 implants) the implants were placed without PRP. Biopsies were obtained and prepared for histologic and histometric analysis after 15, 30, and 55 days of healing. The biopsies retrieved at 15 days showed delicate bone trabeculae formed by immature bone with presence of numerous osteoblasts for both groups. At 30 days the trabeculae presented reversal lines and evident lamellar disposition, where some thread spaces were filled by bone and dense connective tissue. At 55 days, bone healing was not altered in the control group, and histologic aspects were variable for the group treated with PRP. There was no significant difference between the groups for bone-to-implant contact (P > .05). PRP did not enhance bone formation around sandblasted acid-etched implants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
AimTo study osseointegration and bone-level changes at implants installed using either a standard or a reduced diameter bur for implant bed preparation.Material and methodsIn six Labrador dogs, the first and second premolars were extracted bilaterally. Subsequently, mesial roots of the first molars were endodontically treated and distal roots, including the corresponding part of the crown, were extracted. After 3 months of healing, flaps were elevated and recipient sites were prepared in all experimental sites. The control site was prepared using a standard procedure, while the test site was prepared using a drill with a 0.2 mm reduced diameter than the standard one used in the contra-lateral side. After 4 months of healing, the animals were euthanized and biopsies were obtained for histological processing and evaluation.ResultsWith the exception of one implant that was lost, all implants were integrated in mineralized bone. The alveolar crest underwent resorption at control as well as at test sites (buccal aspect similar to 1 mm). The most coronal contact of bone-to-implant was located between 1.2 and 1.6 mm at the test and between 1.3 and 1.7 mm at the control sites. Bone-to-implant contact percentage was between 49% and 67%. No statistically significant differences were found for any of the outcome variables.ConclusionsAfter 4 months of healing, lateral pressure to the implant bed as reflected by higher insertion torques (36 vs. 15 N cm in the premolar and 19 vs. 7 N cm in the molar regions) did not affect the bone-to-implant contact.To cite this article:Pantani F, Botticelli D, Garcia IR Jr., Salata LA, Borges GJ, Lang NP. Influence of lateral pressure to the implant bed on osseointegration: an experimental study in dogs.Clin. Oral Impl. Res. 21, 2010; 1264-1270.doi: 10.1111/j.1600-0501.2009.01941.x.