993 resultados para Bone replacement
Resumo:
The bovine bone and sintetic hydroxyapatite (HA) bioceramics are reference materials to employment as a bone substitute, however, their slow rate of degradation and its low rate of bioactivity index (Ib) are presented as limiting factors for application as bone graft. In contrast, the bioglass is a resorbable and osteoinductive material. the present work objective the development of composites of dispersed bovine bone or sintetic HA in silicate-phosphate bioglass, seeking to obtain a biomaterial with properties suitable for application as bone grafts. The composites were prepared by mixing between the powder components followed by sintering for 1h. Were used HA and bioglass (45S5) with particle size <240μm. The tested proportions of HA/45S5 were 20/80, 30/70 and 40/60 (wt%). The composites characterization was made employing scanning electron microscopy, Infra-Red Spectrometry and hydrolytic resistance test. The test results indicate the potential use of the materials developed for applications such as bone graft. © (2012) Trans Tech Publications, Switzerland.
Resumo:
OBJECTIVES Bone replacement grafting materials play an important role in regenerative dentistry. Despite a large array of tested bone-grafting materials, little information is available comparing the effects of bone graft density on in vitro cell behavior. Therefore, the aim of the present study is to compare the effects of cells seeded on bone grafts at low and high density in vitro for osteoblast adhesion, proliferation, and differentiation. MATERIALS AND METHODS The response of osteoblasts to the presence of a growth factor (enamel matrix derivative, (EMD)) in combination with low (8 mg per well) or high (100 mg per well) bone grafts (BG; natural bone mineral, Bio-Oss®) density, was studied and compared for osteoblast cell adhesion, proliferation, and differentiation as assessed by real-time PCR. Standard tissue culture plastic was used as a control with and without EMD. RESULTS The present study demonstrates that in vitro testing of bone-grafting materials is largely influenced by bone graft seeding density. Osteoblast adhesion was up to 50 % lower when cells were seeded on high-density BG when compared to low-density BG and control tissue culture plastic. Furthermore, proliferation was affected in a similar manner whereby cell proliferation on high-density BG (100 mg/well) was significantly increased when compared to that on low-density BG (8 mg/well). In contrast, cell differentiation was significantly increased on high-density BG as assessed by real-time PCR for markers collagen 1 (Col 1), alkaline phosphatase (ALP), and osteocalcin (OC) as well as alizarin red staining. The effects of EMD on osteoblast adhesion, proliferation, and differentiation further demonstrated that the bone graft seeding density largely controls in vitro results. EMD significantly increased cell attachment only on high-density BG, whereas EMD was able to further stimulate cell proliferation and differentiation of osteoblasts on control culture plastic and low-density BG when compared to high-density BG. CONCLUSION The results from the present study demonstrate that the in vitro conditions largely influence cell behavior of osteoblasts seeded on bone grafts and in vitro testing. CLINICAL RELEVANCE These results also illustrate the necessity for careful selection of bone graft seeding density to optimize in vitro testing and provide the clinician with a more accurate description of the osteopromotive potential of bone grafts.
Resumo:
Agricultural wastes are a source of renewable raw materials (RRM), with structures that can be tailored for the use envisaged. Here, they have proved to be good replacement candidates for use as biomaterials for the growth of osteoblasts in bone replacement therapies. Their preparation is more cost effective than that of materials presently in use with the added bonus of converting a low-cost waste into a value-added product. Due to their origin these solids are ecomaterials. In this study, several techniques, including X-ray diffraction (XRD), chemical analysis, mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), and bioassays, were used to compare the biocompatibility and cell growth of scaffolds produced from beer bagasse, a waste material from beer production, with a control sample used in bone and dental regenerative processes.
Resumo:
Bone is the second most widely transplanted tissue after blood. Synthetic alternatives are needed that can reduce the need for transplants and regenerate bone by acting as active temporary templates for bone growth. Bioactive glasses are one of the most promising bone replacement/regeneration materials because they bond to existing bone, are degradable and stimulate new bone growth by the action of their dissolution products on cells. Sol-gel-derived bioactive glasses can be foamed to produce interconnected macropores suitable for tissue ingrowth, particularly cell migration and vascularization and cell penetration. The scaffolds fulfil many of the criteria of an ideal synthetic bone graft, but are not suitable for all bone defect sites because they are brittle. One strategy for improving toughness of the scaffolds without losing their other beneficial properties is to synthesize inorganic/organic hybrids. These hybrids have polymers introduced into the sol-gel process so that the organic and inorganic components interact at the molecular level, providing control over mechanical properties and degradation rates. However, a full understanding of how each feature or property of the glass and hybrid scaffolds affects cellular response is needed to optimize the materials and ensure long-term success and clinical products. This review focuses on the techniques that have been developed for characterizing the hierarchical structures of sol-gel glasses and hybrids, from atomicscale amorphous networks, through the covalent bonding between components in hybrids and nanoporosity, to quantifying open macroporous networks of the scaffolds. Methods for non-destructive in situ monitoring of degradation and bioactivity mechanisms of the materials are also included. © 2012 The Royal Society.
Resumo:
For decades the Hydroxyapatite (HA) was only bioceramic of calcium phosphate system used for bone replacement and regeneration, due to its similarity to the mineral phase of bones and teeth. Because its slow degradation, other calcium phosphate classified as biodegradable started to awaken interest, such as: amorphous calcium phosphate (ACP), octacalcium phosphate (OCP) and tricalcium phosphate (TCP). This work presents the evolution of the use of other calcium phosphates due to their better solubility than the HA, comparing their main physical-chemical and biological properties. Are also presented the main methods used to obtain bioceramic coatings on metal and polymer surfaces.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
For decades the Hydroxyapatite (HA) was only bioceramic of calcium phosphate system used for bone replacement and regeneration, due to its similarity to the mineral phase of bones and teeth. Because its slow degradation, other calcium phosphate classified as biodegradable started to awaken interest, such as: amorphous calcium phosphate (ACP), octacalcium phosphate (OCP) and tricalcium phosphate (TCP). This work presents the evolution of the use of other calcium phosphates due to their better solubility than the HA, comparing their main physical-chemical and biological properties. Are also presented the main methods used to obtain bioceramic coatings on metal and polymer surfaces.
Resumo:
Seventy-two male albino rats received autogenous transplants of glycerol-preserved rib cartilage into the malar process. The animals were divided into two groups which received preserved cartilage with or without perichondrium. The implants were well tolerated and removal of the perichondrium enhanced the rate of resorption and bone replacement of the material.
Resumo:
This paper presents an individual designing prosthesis for surgical use and proposes a methodology for such design through mathematical extrapolation of data from digital images obtained via tomography of individual patient's bones. Individually tailored prosthesis designed to fit particular patient requirements as accurately as possible should result in more successful reconstruction, enable better planning before surgery and consequently fewer complications during surgery. Fast and accurate design and manufacture of personalized prosthesis for surgical use in bone replacement or reconstruction is potentially feasible through the application and integration of several different existing technologies, which are each at different stages of maturity. Initial case study experiments have been undertaken to validate the research concepts by making dimensional comparisons between a bone and a virtual model produced using the proposed methodology and a future research directions are discussed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Co-culture systems, consisting of outgrowth endothelial cells (OEC) and primary osteoblasts (pOB), represent a prom¬ising instrument to mimick the natural conditions in bone repair processes and provide a new concept to develop constructs for bone replacement. Furthermore, co-culture of OEC and pOB could provide new insights into the molecular and cellular mechanisms that control essential processes during bone repair. The present study described several advantages of the co-culture of pOB and OEC for bone tissue engineering applications, including beneficial effects on the angiogenic activation of OEC, as well as on the assembly of basement membrane matrix molecules and factors involved in vessel maturation and stabilization. The ongoing angiogenic process in the co-culture system proceeded during the course of co-cultivation and correlated with the upregulation of essential angiogenic factors, such as VEGF, angiopoietins, basement membrane molecules and mural cell-specific markers. Furthermore the co-culture system appeared to maintain osteogenic differentiation capacity.rnrnAdditional treatment of co-cultures with growth factors or morphogens might accelerate and improve bone formation and furthermore could be useful for potential clinical applications. In this context, the present study highlights the central role of the morphogen, sonic hedgehog, which has been shown to affect angiogenic activation as well as osteogenic differentiation in the co-culture model of OEC and pOB. Treatment of co-cultures with sonic hedgehog resulted in an increased formation of microvessel-like structures as early as after 24 hours. This proangiogenic effect was induced by the upregulation of the proangiogenic factors, VEGF, angiopoietin1 and angiopoietin 2. In contrast to treatment with a commonly used proangiogenic agent, VEGF, Shh stimulation induced an increased expression of factors associated with vessel maturation and stabilization, mediated through the upregulation of growth factors that are strongly involved in pericyte differentiation and recruitment, including PDGF-BB and TGFbeta. In addition, Shh treatment of co-cultures also resulted in an upregulation of osteogenic differentiation markers like alkaline phosphatase, osteocalcin, osteonectin and osteopontin, as well as an increased matrix calcification. This was a result of upregulation of the osteogenic differentiation regulating factors, BMP2 and RUNX2 which could be assessed in response to Shh treatment. rn
Resumo:
BACKGROUND Treatment of furcation defects is a core component of periodontal therapy. The goal of this consensus report is to critically appraise the evidence and to subsequently present interpretive conclusions regarding the effectiveness of regenerative therapy for the treatment of furcation defects and recommendations for future research in this area. METHODS A systematic review was conducted before the consensus meeting. This review aims to evaluate and present the available evidence regarding the effectiveness of different regenerative approaches for the treatment of furcation defects in specific clinical scenarios compared with conventional surgical therapy. During the meeting, the outcomes of the systematic review, as well as other pertinent sources of evidence, were discussed by a committee of nine members. The consensus group members submitted additional material for consideration by the group in advance and at the time of the meeting. The group agreed on a comprehensive summary of the evidence and also formulated recommendations for the treatment of furcation defects via regenerative therapies and the conduction of future studies. RESULTS Histologic proof of periodontal regeneration after the application of a combined regenerative therapy for the treatment of maxillary facial, mesial, distal, and mandibular facial or lingual Class II furcation defects has been demonstrated in several studies. Evidence of histologic periodontal regeneration in mandibular Class III defects is limited to one case report. Favorable outcomes after regenerative therapy for maxillary Class III furcation defects are limited to clinical case reports. In Class I furcation defects, regenerative therapy may be beneficial in certain clinical scenarios, although generally Class I furcation defects may be treated predictably with non-regenerative therapies. There is a paucity of data regarding quantifiable patient-reported outcomes after surgical treatment of furcation defects. CONCLUSIONS Based on the available evidence, it was concluded that regenerative therapy is a viable option to achieve predictable outcomes for the treatment of furcation defects in certain clinical scenarios. Future research should test the efficacy of novel regenerative approaches that have the potential to enhance the effectiveness of therapy in clinical scenarios associated historically with less predictable outcomes. Additionally, future studies should place emphasis on histologic demonstration of periodontal regeneration in humans and also include validated patient-reported outcomes. CLINICAL RECOMMENDATIONS Based on the prevailing evidence, the following clinical recommendations could be offered. 1) Periodontal regeneration has been established as a viable therapeutic option for the treatment of various furcation defects, among which Class II defects represent a highly predictable scenario. Hence, regenerative periodontal therapy should be considered before resective therapy or extraction; 2) The application of a combined therapeutic approach (i.e., barrier, bone replacement graft with or without biologics) appears to offer an advantage over monotherapeutic algorithms; 3) To achieve predictable regenerative outcomes in the treatment of furcation defects, adverse systemic and local factors should be evaluated and controlled when possible; 4) Stringent postoperative care and subsequent supportive periodontal therapy are essential to achieve sustainable long-term regenerative outcomes.