866 resultados para Bone mineral apparent density
Resumo:
Objective: To analyse bone mineral density (BMD) in juvenile dermatomyositis (JDM) and its possible association with body composition, disease activity, duration of disease, glucocorticoid (GC) use, and biochemical bone parameters, including osteoprotegerin (OPG) and receptor activator of nuclear factor B (RANKL). Methods: Twenty girls with JDM and 20 controls matched for gender and age were selected. Body composition and BMD were analysed by dual-energy X-ray absorptiometry (DXA) and bone mineral apparent density (BMAD) was calculated. Duration of disease, cumulative GC, and GC pulse therapy use were determined from medical records. Disease activity and muscle strength were measured by the Disease Activity Score (DAS), the Childhood Myositis Assessment Scale (CMAS), and the Manual Muscle Test (MMT). Inflammatory and bone metabolism parameters were also analysed. OPG and RANKL were measured in patients and controls using an enzyme-linked immunosorbent assay (ELISA). Results: A lower BMAD in the femoral neck (p< 0.001), total femur (p< 0.001), and whole body (p=0.005) was observed in JDM patients compared to controls. Body composition analysis showed a lower lean mass in JDM compared to controls (p=0.015), but no difference was observed with regard to fat mass. A trend of lower serum calcium was observed in JDM (p=0.05), whereas all other parameters analysed, including OPG and RANKL, were similar. Multiple linear regression analysis revealed that, in JDM, lean mass (p< 0.01) and GC pulse therapy use (p< 0.05) were independent factors for BMAD in the hip region. Conclusions: This study has identified low lean mass and GC pulse therapy use as the major factors for low hip BMAD in JDM patients.
Resumo:
OBJECTIVE: To investigate linkage to chromosome 1q and 11q region for lumbar spine, femoral neck and total body BMD and volumetric BMD in Brazilian sister adolescents aged 10-20-year-old and 57 mothers. METHODS: We evaluated 161 sister pairs (n=329) aged 10-20 years old and 57 of their mothers in this study. Physical traits and lifestyle factors were collected as covariates for lumbar spine (LS), femoral neck (FN) and total body (TB) BMD and bone mineral apparent density (BMAD). We selected nine microsatellite markers in chromosome 1q region (spanning nearly 33cM) and eight in chromosome 11q region (spanning nearly 34cM) to perform linkage analysis. RESULTS: The highest LOD score values obtained from our data were in sister pairs LS BMAD analysis. Their values were: 1.32 (P<0.006), 2.61 (P<0.0002) and 2.44 (P<0.0004) in D1S218, D1S2640 and D1S2623 markers, respectively. No significant LOD score was found with LS and FN BMD/BMAD in chromosome 11q region. Only TB BMD showed significant linkage higher than 1.0 for chromosome 11q region in the markers D11S4191 and D11S937. DISCUSSION/CONCLUSIONS: Our results provided suggestive linkage for LS BMAD at D1S2640 marker in adolescent sister pairs and suggest a possible candidate gene (LHX4) related to adolescent LS BMAD in this region. These results reinforce chromosome 1q21-23 as a candidate region to harbor one or more bone formation/maintenance gene. In the other hand, it did not repeat for chromosome 11q12-13 in our population.
Resumo:
Two factors generally reported to influence bone density are body composition and muscle strength. However, it is unclear if these relationships are consistent across race and sex, especially in older persons. If differences do exist by race and/or sex, then strategies to maintain bone mass or minimize bone loss in older adults may need to be modified accordingly. Therefore, we examined the independent effects of bone mineral-free lean mass (LM), fat mass (FM), and muscle strength on regional and whole body bone mineral density (BMD) in a cohort of 2619 well-functioning older adults participating in the Health, Aging, and Body Composition (Health ABC) Study with complete measures. Participants included 738 white women, 599 black women, 827 white men, and 455 black men aged 70-79 years. BMD (g/cm(2)) of the femoral neck, whole body, upper and lower limb, and whole body and upper limb bone mineral-free LM and FM was assessed by dual-energy X-ray absorptiometry (DXA). Handgrip strength and knee extensor torque were determined by dynamometry. In analyses stratified by race and sex and adjusted for a number of confounders, LM was a significant (p < 0.001) determinant of BMD, except in white women for the lower limb and whole body. In women, FM also was an independent contributor to BMD at the femoral neck, and both PM and muscle strength contributed to limb BMD. The following were the respective Beta-weights (regression coefficients for standardized data, Std beta) and percent difference in BMD per unit (7.5 kg) LM: femoral neck, 0.202-0.386 and 4.7-6.9 %; lower limb,.0.209-0.357 and 2.9-3.5%; whole body, 0.239-0.484 and 3.0-4.7 %; and upper limb (unit = 0.5 kg), 0.231-0.407 and 3.1-3.4%. Adjusting for bone size (bone mineral apparent density [BMAD]) or body size BMD/height) diminished the importance of LM, and the contributory effect of FM became more pronounced. These results indicate that LM and FM were associated with bone mineral depending on the bone site and bone index used. Where differences did occur, they were primarily by sex not race. To preserve BMD, maintaining or increasing LM in the elderly would appear to be an appropriate strategy, regardless of race or sex.
Resumo:
Ballet dancers have on average a low bone mineral content (BMC), with elevated fracture-risk, low body mass index (BMI) for age (body mass index, kg/m2), low energy intake, and delayed puberty. This study aims at a better understanding of the interactions of these factors, especially with regard to nutrition. During a competition for pre-professional dancers we examined 127 female participants (60 Asians, 67 Caucasians). They averaged 16.7 years of age, started dancing at 5.8 years, and danced 22 hours/week. Assessments were made for BMI, BMC (DXA), and bone mineral apparent density (BMAD) at the lumbar spine and femoral neck, pubertal stage (Tanner score), and nutritional status (EAT-40 questionnaire and a qualitative three-day dietary record). BMI for age was found to be normal in only 42.5% of the dancers, while 15.7% had a more or less severe degree of thinness (12.6% Grade2 and 3.1% Grade 3 thinness). Menarche was late (13.9 years, range 11 to 16.8 years). Food intake, evaluated by number of consumed food portions, was below the recommendations for a normally active population in all food groups except animal proteins, where the intake was more than twice the recommended amount. In this population, with low BMI and intense exercise, BMC was low and associated with nutritional factors; dairy products had a positive and non-dairy proteins a negative influence. A positive correlation between BMAD and years since menarche confirmed the importance of exposure to estrogens and the negative impact of delayed puberty. Because of this and the probable negative influence of a high intake of non-dairy proteins, such as meat, fish, and eggs, and the positive association with a high dairy intake, ballet schools should promote balanced diets and normal weight and should recognize and help dancers avoid eating disorders and delayed puberty caused by extensive dancing and inadequate nutrition.
Resumo:
Aim. Numerous studies report an association between muscle strength and bone mineral density (BMD) in young and older women. However, the participants are generally non-athletes, thus it is unclear if the relationship varies by exercise status. Therefore, the purpose was to examine the relationships between BMD and muscle strength in young women with markedly different exercise levels. Methods. Experimental design: cross-sectional. Setting: a University research laboratory. Participants: 18 collegiate gymnasts and 22 age- and weight-matched recreationally active control women. Measures: lumbar spine, femoral neck, arm, leg and whole body BMD (g/cm(2)) were assessed by dual X-ray absorptiometry. In addition, lumbar spine and femoral neck bone mineral apparent density (BMAD, g/cm(3)) was calculated. Handgrip strength and knee extensor and flexor torque (60degrees/s) were determined by dynamometry, and bench press and leg press strength (1-RM) using isotonic equipment. Results. BMD at all sites and bench press, leg press and knee flexor strength were greater in gymnasts than controls (p
Resumo:
Juvenile onset systemic sclerosis (JoSSc) is a rare disease, and there are no studies focusing in bone mineral density and biochemical bone parameters. Ten consecutive patients with JoSSc and 10 controls gender, age, menarche age, and physical activity matched were selected. Clinical data were obtained at the medical visit and chart review. Laboratorial analysis included autoantibodies, 25-hydroxyvitamin D (25OHD), intact parathyroid hormone, calcium, phosphorus, alkaline phosphatase and albumin sera levels. Bone mineral density was analyzed by dual-energy X-ray absorptiometry, and bone mineral apparent density (BMAD) was calculated. A lower BMAD in femoral neck (0.294 +/- A 0.060 vs. 0.395 +/- A 0.048 g/cm(3), P = 0.001) and total femur (0.134 +/- A 0.021 vs. 0.171 +/- A 0.022 g/cm(3), P = 0.002) was observed in JoSSc compared to controls. Likewise, a trend to lower BMAD in lumbar spine (0.117 +/- A 0.013 vs. 0.119 +/- A 0.012 g/cm(3), P = 0.06) was also found in these patients. Serum levels of 25OHD were significantly lower in JoSSc compared to controls (18.1 +/- A 6.4 vs. 25.1 +/- A 6.6 ng/mL, P = 0.04), and all patients had vitamin D insufficiency (< 20 ng/mL) compared to 40% of controls (P = 0.01). All other biochemical parameters were within normal range and alike in both groups. BMAD in femoral neck and total femur was correlated with 25OHD levels in JoSSc (r = 0.82, P = 0.004; r = 0.707, P = 0.02; respectively). We have identified a remarkable high prevalence of 25OHD insufficiency in JoSSc. Its correlation with hip BMAD suggests a causal effect and reinforces the need to incorporate this hormone evaluation in this disease management.
Resumo:
Objective. To investigate the effects of a supervised exercise training program on health parameters, physical capacity, and health-related quality of life in patients with mild and chronic juvenile dermatomyositis (DM). Methods. This was a prospective longitudinal study following 10 children with mild and chronic juvenile DM (disease duration >1 year). The exercise program consisted of twice-a-week aerobic and resistance training. At baseline and after the 12-week intervention, we assessed muscle strength and function, aerobic conditioning, body composition, juvenile DM scores, and health-related quality of life. Results. Child self-report and parent proxy-report Pediatric Quality of Life Inventory scores were improved after the intervention (-40.3%; P = 0.001 and -48.2%; P = 0.049, respectively). Importantly, after exercise, the Disease Activity Score was reduced (-26.9%; P = 0.026) and the Childhood Muscle Assessment Scale was improved (+2.5%; P = 0.009), whereas the Manual Muscle Test presented a trend toward statistical significance (+2.2%; P = 0.081). The peak oxygen consumption and time-to-exhaustion were increased by 13.3% (P = 0.001) and 18.2% (P = 0.003), respectively, whereas resting heart rate was decreased by 14.7% (P = 0.006), indicating important cardiovascular adaptations to the exercise program. Upper and lower extremity muscle strength and muscle function were also significantly improved after the exercise training (P < 0.05). Both the whole-body and the lumbar spine bone mineral apparent density were significantly increased after training (1.44%; P = 0.044 and 2.85%; P = 0.008, respectively). Conclusion. We showed for the first time that a 12-week supervised exercise program is safe and can improve muscle strength and function, aerobic conditioning, bone mass, disease activity, and health-related quality of life in patients with active and nonactive mild and chronic juvenile DM with near normal physical function and quality of life.
Resumo:
To compare variations in bone mineral density (BMD) and body composition (BC) in depot-medroxyprogesterone acetate (DMPA) users and nonusers after providing counselling on healthy lifestyle habits. An exploratory study in which women aged 18 to 40 years participated: 29 new DMPA users and 25 new non-hormonal contraceptive users. All participants were advised on healthy lifestyle habits: sun exposure, walking and calcium intake. BMD and BC were assessed at baseline and 12 months later. Statistical analysis included the Mann-Whitney test or Student's t-test followed by multiple linear regression analysis. Compared to the controls, DMPA users had lower BMD at vertebrae L1 and L4 after 12 months of use. They also had a mean increase of 2 kg in total fat mass and an increase of 2.2% in body fat compared to the non-hormonal contraceptive users. BMD loss at L1 was less pronounced in DMPA users with a calcium intake ≥ 1 g/day compared to DMPA users with a lower calcium intake. DMPA use was apparently associated with lower BMD and an increase in fat mass at 12 months of use. Calcium intake ≥ 1 g/day attenuates BMD loss in DMPA users. Counselling on healthy lifestyle habits failed to achieve its aims.
Resumo:
Introduction: Osteogenic effects of therapeutic fluoride have been reported; however, the impact of exposure to low level water fluoridation on bone density is not clear. We investigated the effect of long-term exposure to fluoridated water from growth to young adulthood on bone mineral density (BMD). Methods: BMD was measured in 24 healthy women from Regina (fluoride 0.1 mg/L) and 33 from Saskatoon (fluoride 1.0 mg/L), with no differences between groups for height, weight, lifestyle or dietary factors. Results: Saskatoon women had significantly higher mean BMD at total anterior-posterior lumbar spine (APS) and estimated volumetric L3 (VLS), with no difference at total body (TB) or proximal femur (PF). Conclusion: Exposure to water fluoridation during the growing years may have a power impact on axial spine bone density in young women.
Resumo:
Back,ground To examine the role of long-term swimming exercise on regional and total body bone mineral density (BMD) in men. Methods. Experimental design: Cross-sectional. Setting: Musculoskeletal research laboratory at a medical center, Participants:We compared elite collegiate swimmers (n=11) to age-, weight-, and height-matched non-athletic controls (n=11), Measures: BMD (g/cm(2)) of the lumbar spine L2-4, proximal femur (femoral neck, trochanter, Ward's triangle), total body and various subregions of the total body, as well as regional and total body fat and bone mineral-free lean mass (LM) was assessed by dual-energy X-ray absorptiometry (DXA, Hologic QDR 1000/W). Results. Swimmers, who commenced training at 10.7+/-3.7 yrs (mean+/-SD) and trained for 24.7+/-4.2 hrs per week, had a greater amount of LM (p<0.05), lower fat mass (p<0.001) and percent body fat (9.5 vs 16.2 %, p<0.001) than controls. There was no significant difference between groups for regional or total body BRID, In stepwise multiple regression analysis, body weight was a consistent independent predictor of regional and total body BMD, Conclusions. These results suggest that long-term swimming is not an osteogenic mode of training in college-aged males. This supports our previous findings in young female swimmers who displayed no bone mass benefits despite long-standing athletic training.
Resumo:
Maximization of bone accrual during the growing years is thought to be an important factor in minimizing fracture risk in old age. Mechanical loading through physical activity has been recommended as a modality for the conservation of bone mineral in adults; however, few studies have evaluated the impact of different loading regimes in growing children. The purpose of this study was to compare bone mineral density (BMD) in weight-bearing and non-weight-bearing limbs in 17 children with unilateral Legg Calve Perthes Disease (LCPD). Children with this condition have an altered weight-bearing pattern whereby there is increased mechanical loading on the noninvolved normal hip and reduced loading on the involved painful hip. Thus, these children provide a unique opportunity to study the impact of differential mechanical loading on BMD during the growing years while controlling for genetic disposition. BMD at four regions of the proximal femur (trochanter, intertrochanter, femoral neck, total of the regions) was measured using dual energy x-ray absorptiometry (DXA), and the values were compared between the involved and noninvolved sides of the children with LCPD. The BMD of both sides also were compared with normative values based on both chronological and skeletal age data. A significantly higher BMD was found on the noninvolved side over the involved side for all regions (P
Resumo:
Objective: Only few large families with multiple endocrine neoplasia type 1 (MEN1) have been documented. Here, we aimed to investigate the clinical features of a seven-generation Brazilian pedigree. which included 715 at-risk family members. Design: Genealogical and geographic analysis was used to identify the MEN1 pedigree. Clinical and genetic approach was applied to characterize the phenotypic and genotypic features of the family members. Results: Our genetic data indicated that a founding mutation in the MEN1 gene has occurred in this extended Brazilian family. Fifty family members were diagnosed with MEN1. Very high frequencies of functioning and non-functioning MEN1-related tumors were documented and the prevalence of prolactinoma (29.6%) was similar to that previously described in prolactinoma-variant Burin (32%). In addition, bone mineral density analysis revealed severe osteoporosis (T,-2.87 +/- 0.32) of compact bone (distal radius) in hyperparathyroidism (HPT)/MEN1 patients. while marked bone mineral loss in the lumbar spine (T,-1.95 +/- 0.39). with most cancellous bone, and femoral neck (mixed composition: T,-1.48 +/- 0.27) were also present. Conclusions: In this study, we described clinically and genetically the fifth largest MEN1 family in the literature. Our data confirm previous findings suggesting that prevalence of MEN1-related tumors in large families may differ from reports combining cumulative data of small families. Furthermore. we were able to evaluate the bone status in HPT/MEN1 cases, a subject that has been incompletely approached in the literature. We discussed the bone loss pattern found in our MEN1 patients comparing with that of patients with sporadic primary HPT.
Resumo:
P>Objective Limited data have been reported on the effect of parathyroidectomy (PTx) on bone mineral density (BMD) in the setting of patients with hyperparathyroidism (HPT) associated with multiple endocrine neoplasia type 1 (MEN1). This study investigates the impact of total PTx on BMD in patients with HPT/MEN1. Design and patients A case series study was performed in a tertiary academic hospital. A total of 16 HPT/MEN1 patients from six families harbouring MEN1 germline mutations were subjected to total PTx followed by parathyroid auto-implant in the forearm. Measurements Bone mineral density values were assessed using dual-energy X-ray absorptiometry. Results Before PTx, reduced BMD (Z-score <-2 center dot 0) was highly prevalent in the proximal one-third of the distal radius (1/3 DR) (50%), lumbar spine (LS) (43 center dot 7%), ultradistal radius (UDR) (43 center dot 7%), femoral neck (FN) (25%) and total femur (TF) (18 center dot 7%) in the patients. Fifteen months after PTx, we observed a BMD improvement in the LS (from 0 center dot 843 to 0 center dot 909 g/cm2; +8 center dot 4%, P = 0 center dot 001), FN (from 0 center dot 745 to 0 center dot 798 g/cm2; +7 center dot 7%, P = 0 center dot 0001) and TF (from 0 center dot 818 to 0 center dot 874 g/cm2; +6 center dot 9%, P < 0 center dot 0001). No significant change was noticed in the 1/3 DR and UDR after PTx. Conclusions This data confirmed BMD recovery in the LS and FN after PTx in HPT/MEN1 patients. We also documented a significant BMD increase in the TF and no change in both the 1/3 DR and UDR BMD after PTx. Our data suggest that LS and proximal femur are the most informative sites to evaluate the short-term BMD outcome after PTx in HPT/MEN1 subjects.
Resumo:
Objective: The study was designed to evaluate the effects of strength training (ST) on the bone mineral density (BMD) of postmenopausal women without hormone replacement therapy. Method: Subjects were randomized into untrained (UN) or trained (TR) groups. The TR group exercised three ST sessions per week for 24 weeks, and body composition, muscular strength, and BMD of the lumbar spine and femur neck were evaluated. Results: Body weight, mass index, and fat percentage were lower after 24 weeks only in the TR group (p < .05). SR also improved the one repetition maximum test in 46% and 39% of upper and lower limbs, respectively. The percentage of demineralization was higher in the UN group than in the TR group at the lumbar spine and femoral neck (p < .05). Discussion: Results indicated that 24 weeks of ST improved body composition parameters, increased muscular strength, and preserved BMD in postmenopausal women.