933 resultados para Bone marrow transplant
Resumo:
Allogeneic blood or bone marrow transplantation is a successful treatment for leukaemia and severe aplastic anaemia (SAA). Graft rejection following transplantation for leukaemia is a rare event but leukaemic relapse may occur at varying rates, depending upon the stage of leukaemia at which the transplant was undertaken and the type of leukaemia. Relapse is generally assumed to occur in residual host cells, which are refractory to, or escape from the myeloablative conditioning therapy. Rare cases have been described, however, in which the leukaemia recurs in cells of donor origin. Lack of a successful outcome of blood or bone marrow transplantation for severe aplastic anaemia (SAA), however, is due to late graft rejection or graft-versus-host disease. Leukaemia in cells of donor origin has rarely been reported in patients following allogeneic bone marrow transplantation for SAA. This report describes leukaemic transformation in donor cells following a second allogeneic BMT for severe aplastic anaemia. PCR of short tandem repeats in bone marrow aspirates and in colonies derived from BFUE and CFU-GM indicated the donor origin of leukaemia. Donor leukaemia is a rare event following transplantation for severe aplastic anaemia but may represent the persistence or perturbation of a stromal defect in these patients inducing leukaemic change in donor haemopoietic stem cells.
Resumo:
We present a patient who was diagnosed as suffering from Fanconi anaemia at the age of 36 years. At the time of diagnosis his bone marrow showed features of pre-leukaemic transformation. He received an allogeneic bone marrow transplant (BMT) from his HLA-identical sibling. The post-transplant course was unremarkable with evidence of trilineage engraftment at day +32 and no acute or chronic GVHD. He is well with sustained engraftment and no haematological evidence of Fanconi anaemia 18 months post-transplant.
Resumo:
Specialized microenvironments have been known to strongly influence stem cell fate in hematopoiesis. The interplay between osteolineage cells, specifically the mature osteoblast, and the hematopoietic stem cell (HSC) niche have been of particular note. Recently, preliminary unpublished data obtained in the Scadden laboratory suggests the critical role of the osteoblast in regulating T cells. The goal of this project was to initially determine whether stimulating the osteoblast in the HSC niche leads to increased immune reconstitution after hematopoietic stem cell transplant (HSCT). These results indicated that while bone manipulation pre-transplant may have a positive effect on T and B lymphocyte cell recovery, bone manipulation post-transplant seems to have a suppressing effect. Additionally, stimulation of the osteoblast may have an inhibitory effect on the regeneration of GR1+ myeloid cells. Based on these results, we then sought to determine how osteoprotection pre-HSCT modifies the kinetics of graft-versus-host disease (GVHD) and impacts the regeneration of immune cells. The data from this phase of my experiment suggests a possible immediate benefit in stimulation of the osteoblast in response to GVHD prior to HSCT. The overall results from my thesis project demonstrate a promising relationship between pre-HSCT stimulation of the osteoblast and lymphocyte recovery post-HSCT. ¿
Resumo:
This study analysed the outcome of 563 Aplastic Anaemia (AA) children aged 0-12 years reported to the Severe Aplastic Anaemia Working Party database of the European Society for Blood and Marrow Transplantation, according to treatment received. Overall survival (OS) after upfront human leucocyte antigen-matched family donor (MFD) haematopoietic stem cell transplantation (HSCT) or immunosuppressive treatment (IST) was 91% vs. 87% (P 0·18). Event-free survival (EFS) after upfront MFD HSCT or IST was 87% vs. 33% (P 0·001). Ninety-one of 167 patients (55%) failed front-line IST and underwent rescue HSCT. The OS of this rescue group was 83% compared with 91% for upfront MFD HSCT patients and 97% for those who did not fail IST up-front (P 0·017). Rejection was 2% for MFD HSCT and HSCT post-IST failure (P 0·73). Acute graft-versus-host disease (GVHD) grade II-IV was 8% in MFD graft vs. 25% for HSCT post-IST failure (P < 0·0001). Chronic GVHD was 6% in MFD HSCT vs. 20% in HSCT post-IST failure (P < 0·0001). MFD HSCT is an excellent therapy for children with AA. IST has a high failure rate, but remains a reasonable first-line choice if MFD HSCT is not available because high OS enables access to HSCT, which is a very good rescue option.
Resumo:
To determine which features of retroviral vector design most critically affect gene expression in hematopoietic cells in vivo, we have constructed a variety of different retroviral vectors which encode the same gene product, human adenosine deaminase (EC 3.5.4.4), and possess the same vector backbone yet differ specifically in transcriptional control sequences suggested by others to be important for gene expression in vivo. Murine bone marrow cells were transduced by each of the recombinant viruses and subsequently used to reconstitute the hematopoietic system of lethally irradiated recipients. Five to seven months after transplantation, analysis of the peripheral blood of animals transplanted with cells transduced by vectors which employ viral long terminal repeats (LTRs) for gene expression indicated that in 83% (77/93) of these animals, the level of human enzyme was equal to or greater than the level of endogenous murine enzyme. Even in bone marrow transplant recipients reconstituted for over 1 year, significant levels of gene expression were observed for each of the vectors in their bone marrow, spleen, macrophages, and B and T lymphocytes. However, derivatives of the parental MFG-ADA vector which possess either a single base mutation (termed B2 mutation) or myeloproliferative sarcoma virus LTRs rather than the Moloney murine leukemia virus LTRs led to significantly improved gene expression in all lineages. These studies indicate that retroviral vectors which employ viral LTRs for the expression of inserted sequences make it possible to obtain high levels of a desired gene product in most hematopoietic cell lineages for close to the lifetime of bone marrow transplant recipients.
Resumo:
The aims of this study were to establish the nutritional status of children pre- BMT and to determine whether predictive methods of assessing nutritional status and resting energy expenditure ( REE) are accurate in this population. We analysed the body cell mass ( BCM) ( n = 26) and REE ( n = 24) in children undergoing BMT. BCM was adjusted for height ( BCM/ HTp) and expressed as a Z score to represent nutritional status. To determine whether body mass index ( BMI) was indicative of nutritional status in children undergoing BMT, BMI Z scores were compared to the reference method of BCM/ HTp Z scores. Schofield predictive equations of basal metabolic rate ( BMR) were compared to measured REE to evaluate the accuracy of the predictive equations. The mean BCM/ HTp Z score for the subject population was -1.09 +/- 1.28. There was no significant relationship between BCM/ HTp Z score and BMI Z score ( r = 0.34; P > 0.05); however there was minimal difference between measured REE and predicted BMR ( bias = -11 +/- 149 kcal/ day). The results of this study demonstrate that children undergoing BMT may have suboptimal nutritional status and that BMI is not an accurate indication of nutritional status in this population. However, Schofield equations were found to be suitable for representing REE in children pre- BMT.
Resumo:
Objective: The objective of the study was to characterise the population pharmacokinetic properties of itraconazole and its active metabolite hydroxyitraconazole in a representative paediatric population of cystic fibrosis and bone marrow transplant (BMT) patients and to identify patient characteristics influencing the pharmacokinetics of itraconazole. The ultimate goals were to determine the relative bioavailability between the two oral formulations (capsules vs oral solution) and to optimise dosing regimens in these patients. Methods: All paediatric patients with cystic fibrosis or patients undergoing BMT at The Royal Children's Hospital, Brisbane, QLD, Australia, who were prescribed oral itraconazole for the treatment of allergic bronchopulmonary aspergillosis (cystic fibrosis patients) or for prophylaxis of any fungal infection (BMT patients) were eligible for the study. Blood samples were taken from the recruited patients as per an empirical sampling design either during hospitalisation or during outpatient clinic visits. ltraconazole and hydroxy-itraconazole plasma concentrations were determined by a validated high-performance liquid chromatography assay with fluorometric detection. A nonlinear mixed-effect modelling approach using the NONMEM software to simultaneously describe the pharmacokinetics of itraconazole and its metabolite. Results: A one-compartment model with first-order absorption described the itraconazole data, and the metabolism of the parent drug to hydroxy-itraconazole was described by a first-order rate constant. The metabolite data also showed one-compartment characteristics with linear elimination. For itraconazole the apparent clearance (CLitraconazole) was 35.5 L/hour, the apparent volume of distribution (V-d(itraconazole)) was 672L, the absorption rate constant for the capsule formulation was 0.0901 h(-1) and for the oral solution formulation was 0.96 h-1. The lag time was estimated to be 19.1 minutes and the relative bioavailability between capsules and oral solution (F-rel) was 0.55. For the metabolite, volume of distribution, V-m/(F (.) f(m)), and clearance, CL/(F (.) fm), were 10.6L and 5.28 L/h, respectively. The influence of total bodyweight was significant, added as a covariate on CLitraconazoie/F and V-d(itraconazole)/F (standardised to a 70kg person) using allometric three-quarter power scaling on CLitraconazole/F, which therefore reflected adult values. The unexplained between-subject variability (coefficient of variation %) was 68.7%, 75.8%, 73.4% and 61.1% for CLitraconazoie/F, Vd(itraconazole)/F, CLm/(F (.) fm) and F-rel, respectively. The correlation between random effects of CLitraconazole and Vd((itraconazole)) was 0.69. Conclusion: The developed population pharmacokinetic model adequately described the pharmacokinetics of itraconazole and its active metabolite, hydroxy-itraconazole, in paediatric patients with either cystic fibrosis or undergoing BMT. More appropriate dosing schedules have been developed for the oral solution and the capsules to secure a minimum therapeutic trough plasma concentration of 0.5 mg/L for these patients.
Resumo:
Objectives: The aim of the study was to characterise the population pharmacokinetics (popPK) properties of itraconazole (ITRA) and its active metabolite hydroxy-ITRA in a representative paediatric population of cystic fibrosis (CF) and bone marrow transplant (BMT) patients. The goals were to determine the relative bioavailability between the two oral formulations, and to explore improved dosage regimens in these patients. Methods: All paediatric patients with CF taking oral ITRA for the treatment of allergic bronchopulmonary aspergillosis and patients undergoing BMT who were taking ITRA for prophylaxis of any fungal infection were eligible for the study. A minimum of two blood samples were drawn after the capsules and also after switching to oral solution, or vice versa. ITRA and hydroxy-ITRA plasma concentrations were measured by HPLC[1]. A nonlinear mixed-effect modelling approach (NONMEM 5.1.1) was used to describe the PK of ITRA and hydroxy-ITRA simultaneously. Simulations were used to assess dosing strategies in these patients. Results: Forty-nine patients (29CF, 20 BMT) were recruited to the study who provided 227 blood samples for the population analysis. A 1-compartment model with 1st order absorption and elimination best described ITRA kinetics, with 1st order conversion to hydroxy-ITRA. For ITRA, the apparent clearance (ClItra/F) and volume of distribution (Vitra/F) was 35.5L/h and 672L, respectively; the absorption rate constant for the capsule formulation was 0.0901 h-1 and for the oral solution formulation it was 0.959 h-1. The capsule comparative bioavailability (vs. solution) was 0.55. For hydroxy-ITRA, the apparent volume of distribution and clearance were 10.6 L and 5.28 L/h, respectively. Of several screened covariates only allometrically scaled total body weight significantly improved the fit to the data. No difference between the two populations was found. Conclusion: The developed popPK model adequately described the pharmacokinetics of ITRA and hydroxy-ITRA in paediatric patients with CF and patients undergoing BMT. High inter-patient variability confirmed previous data in CF[2], leukaemia and BMT[3] patients. From the population model, simulations showed the standard dose (5 mg/kg/day) needs to be doubled for the solution formulation and even 4 times more given of the capsules to achieve an adequate target therapeutic trough plasma concentration of 0.5 mg/L[4] in these patients.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)