968 resultados para Bone growth
Resumo:
Photons participate in many atomic and molecular interactions and changes. Recent biophysical research has shown the induction of ultraweak photons in biological tissue. It is now established that plants, animal and human cells emit a very weak radiation which can be readily detected with an appropriate photomultiplier system. Although the emission is extremely low in mammalian cells, it can be efficiently induced by ultraviolet light. In our studies, we used the differentiation system of human skin fibroblasts from a patient with Xeroderma Pigmentosum of complementation group A in order to test the growth stimulation efficiency of various bone growth factors at concentrations as low as 5 ng/ml of cell culture medium. In additional experiments, the cells were irradiated with a moderate fluence of ultraviolet A. The different batches of growth factors showed various proliferation of skin fibroblasts in culture which could be correlated with the ultraweak photon emission. The growth factors reduced the acceleration of the fibroblast differentiation induced by mitomycin C by a factor of 10-30%. In view that fibroblasts play an essential role in skin aging and wound healing, the fibroblast differentiation system is a very useful tool in order to elucidate the efficacy of growth factors.
Resumo:
Silicon nitride has demonstrated to be a potential candidate for clinical applications because it is a non-cytotoxic material and has satisfactory fracture toughness, high wear resistance and low friction coefficient. In this paper, samples of silicon nitride, which were kept into rabbits` tibias for 8 weeks, and the adjacentbone tissue were analysed by scanning electron microscopy in order to verify the bone growth around the implants and the interaction between the implant and the bone. Bone growth occurred mainly in the cortical areas, although it has been observed that the newly bone tends to grow toward the marrow cavity. Differences were observed between the implants installed into distal and proximal regions. In the first region, where the distance between the implant and the cortical bone is greater than in the proximal region, the osteoconduction process was evidenced by the presence of a bridge bone formation toward the implant surface. The results showed that silicon nitride can be used as biomaterial since the newly bone grew around the implants. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
1. This investigation was carried out to study the influence of early quantitative food restriction (40% of ad libitum intake from 7 to 14 d of age) and environmental rearing temperature (thermoneutral, cold and hot) on long bone (tibia, femur and humerus) development in broiler chickens.2. Tibia, femur and humerus were obtained at the ages of 14, 21, 28, 35 and 42 d; and the variables studied were: length and width (mm, expressed as absolute values), bone breaking strength (kgf) and bone weight/bone length index (BW/BL, mg/mm).3. All bone variables increased with bird age. Food restriction reduced bone length and width but did not affect bone weight. High environmental rearing temperature reduced bone length and width at 42 d of age. Bone strength was not affected by environmental temperature but the calculated BW/BL index was reduced by heat exposure.4. The findings suggest that food restriction and high environmental rearing temperature reduce long bone growth; bone breaking strength was affected by bird age but not by food restriction nor rearing ambient temperature.
Resumo:
Agricultural wastes are a source of renewable raw materials (RRM), with structures that can be tailored for the use envisaged. Here, they have proved to be good replacement candidates for use as biomaterials for the growth of osteoblasts in bone replacement therapies. Their preparation is more cost effective than that of materials presently in use with the added bonus of converting a low-cost waste into a value-added product. Due to their origin these solids are ecomaterials. In this study, several techniques, including X-ray diffraction (XRD), chemical analysis, mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), and bioassays, were used to compare the biocompatibility and cell growth of scaffolds produced from beer bagasse, a waste material from beer production, with a control sample used in bone and dental regenerative processes.
Resumo:
The development of bone mass during the growing years is an important determinant for risk of osteoporosis in later life. Adequate dietary intake during the growth period may be critical in reaching bone growth potential. The Saskatchewan Bone Mineral Accrual Study (BMAS) is a longitudinal study of bone growth in Caucasian children. We have calculated the times of maximal peak bone mineral content (BMC) velocity to be 14.0 +/- 1.0 y in boys and 12.5 +/- 0.9 y in girls; bone growth is maximal similar to6 mo after peak height velocity. In the 2 y of peak skeletal growth, adolescents accumulate over 25% of adult bone. BMAS data may provide biological data on calcium requirements through application of calcium accrual values to factorial calculations of requirement. As well, our data are beginning to reveal how dietary patterns may influence attainment of bone mass during the adolescent growth spurt. Replacing milk intake by soft drinks appears to be detrimental to bone gain by girls, but not boys. Fruit and vegetable intake, providing alkalinity to bones and/or acting as a marker of a healthy diet, appears to influence BMC in adolescent girls, but not boys. The reason why these dietary factors appear to be more influential in girls than in boys may be that BMAS girls are consuming less than their requirement for calcium, while boys are above their threshold. Specific dietary and nutrient recommendations for adolescents are needed in order to ensure optimal bone growth and consolidation during this important life stage.
Resumo:
This study aimed to investigate the effects of physical training, and different levels of protein intake in the diet, on the growth and nutritional status of growing rats. Newly-weaned Wistar rats (n=48) were distributed into six experimental groups: three of them were subjected to physical swim training (1 h per day. 5 d per week, for 4 wk, after 2 wk of familiarization) and the other three were considered as controls (non-trained). Each pair of groups, trained and non-trained, received diets with a different level of protein in their composition: 14%. 21% or 28%. The animals were euthanized at the end of the training period and the following analyses were performed: proteoglycan synthesis as a biomarker of bone and cartilage growth, IGF-I (insulin-like growth factor-I) assay as a biomarker of growth and nutritional status. total RNA and protein concentration and protein synthesis measured in vivo using a large-dose phenylalanine method. As a main finding, increased dietary protein, combined with physical training, was able to improve neither tissue protein synthesis nor muscle growth. In addition, cartilage and bone growth seem to be deteriorated by the lower and the higher levels of protein intake. Our data allow us to conclude that protein enhancement in the diet, combined with physical exercise, does not stimulate tissue protein synthesis or muscle mass growth. Furthermore, physical training, combined with low protein intake, was not favorable to bone development in growing animals
Resumo:
This study aimed to investigate the effects of physical training, and different levels of protein intake in the diet, on the growth and nutritional status of growing rats. Newly-weaned Wistar rats (n=48) were distributed into six experimental groups: three of them were subjected to physical swim training (1 h per day. 5 d per week, for 4 wk, after 2 wk of familiarization) and the other three were considered as controls (non-trained). Each pair of groups, trained and non-trained, received diets with a different level of protein in their composition: 14%. 21% or 28%. The animals were euthanized at the end of the training period and the following analyses were performed: proteoglycan synthesis as a biomarker of bone and cartilage growth, IGF-I (insulin-like growth factor-I) assay as a biomarker of growth and nutritional status. total RNA and protein concentration and protein synthesis measured in vivo using a large-dose phenylalanine method. As a main finding, increased dietary protein, combined with physical training, was able to improve neither tissue protein synthesis nor muscle growth. In addition, cartilage and bone growth seem to be deteriorated by the lower and the higher levels of protein intake. Our data allow us to conclude that protein enhancement in the diet, combined with physical exercise, does not stimulate tissue protein synthesis or muscle mass growth. Furthermore, physical training, combined with low protein intake, was not favorable to bone development in growing animals.
Resumo:
We sought to describe the bone bridge technique in adults, and present a variation for use in children, as well as to present its applicability as an option in elective transtibial amputations. This paper presents a prospective study of 15 transtibial amputations performed between 1992 and 1995 in which the bone bridge technique was employed. The patients' ages ranged from 8 to 48 years, with an average of 22.5 years. This technique consisted of the preparation of a cylinder of periosteum extracted from the tibia and with cortical bone fragments attached to it to promote a tibiofibular synostosis on the distal extremity of the amputation stump. We noted that the cortical bone fragments were dispensable when the technique was employed in children, due to the increased osteogenic capacity of the periosteum. This led to a variation of the original technique, a bone bridge without the use of the cortical bone fragments. RESULTS: The average time spent with this procedure, without any significant variation between adults and children, was 171 minutes. The adaptation to the definitive prosthesis was accomplished between 20 and 576 days, with an average of 180 days. Revision of the procedure was necessary in 3 amputations. CONCLUSIONS: This technique may be employed in transtibial amputations in which the final length of the stump lies next to the musculotendinous transition of the gastrocnemius muscle, as well as in the revision of amputation stumps in children, where the procedure has been shown to be effective in the prevention of lesions due to excessive bone growth.
Resumo:
Fibroblast growth factor 23 (FGF23) is a circulating factor secreted by osteocytes that is essential for phosphate homeostasis. In kidney proximal tubular cells FGF23 inhibits phosphate reabsorption and leads to decreased synthesis and enhanced catabolism of 1,25-dihydroxyvitamin D3 (1,25[OH]2 D3 ). Excess levels of FGF23 cause renal phosphate wasting and suppression of circulating 1,25(OH)2 D3 levels and are associated with several hereditary hypophosphatemic disorders with skeletal abnormalities, including X-linked hypophosphatemic rickets (XLH) and autosomal recessive hypophosphatemic rickets (ARHR). Currently, therapeutic approaches to these diseases are limited to treatment with activated vitamin D analogues and phosphate supplementation, often merely resulting in partial correction of the skeletal aberrations. In this study, we evaluate the use of FGFR inhibitors for the treatment of FGF23-mediated hypophosphatemic disorders using NVP-BGJ398, a novel selective, pan-specific FGFR inhibitor currently in Phase I clinical trials for cancer therapy. In two different hypophosphatemic mouse models, Hyp and Dmp1-null mice, resembling the human diseases XLH and ARHR, we find that pharmacological inhibition of FGFRs efficiently abrogates aberrant FGF23 signaling and normalizes the hypophosphatemic and hypocalcemic conditions of these mice. Correspondingly, long-term FGFR inhibition in Hyp mice leads to enhanced bone growth, increased mineralization, and reorganization of the disturbed growth plate structure. We therefore propose NVP-BGJ398 treatment as a novel approach for the therapy of FGF23-mediated hypophosphatemic diseases.
Resumo:
Growth factors seem to be part of a complex cellular signalling language, in which individual growth factors are the equivalents of the letters that compose words. According to this analogy, informational content lies, not in an individual growth factor, but in the entire set of growth factors and others signals to which a cell is exposed. The ways in which growth factors exert their combinatorial effects are becoming clearer as the molecular mechanisms of growth factors actions are being investigated. A number of related extracellular signalling molecules that play widespread roles in regulating development in both invertebrates and vertebrates constitute the Fibroblast Growth Factor (FGF) and type beta Transforming Growth Factor ((TGF beta). The latest research literature about the role and fate of these Growth factors and their influence in the craniofacial bone growth ad development is reviewed
Resumo:
Growth factors seem to be part of a complex cellular signalling language, in which individual growth factors are the equivalents of the letters that compose words. According to this analogy, informational content lies, not in an individual growth factor, but in the entire set of growth factors and others signals to which a cell is exposed. The ways in which growth factors exert their combinatorial effects are becoming clearer as the molecular mechanisms of growth factors actions are being investigated. A number of related extracellular signalling molecules that play widespread roles in regulating development in both invertebrates and vertebrates constitute the Fibroblast Growth Factor (FGF) and type beta Transforming Growth Factor ((TGF beta). The latest research literature about the role and fate of these Growth factors and their influence in the craniofacial bone growth ad development is reviewed