779 resultados para Bone allografts
Resumo:
Background: The repair of large bone defects is a major orthopedic challenge because autologous bone grafts are not available in large amounts and because harvesting is often associated with donor-site morbidity. Considering that bone marrow stromal cells (BMSC) are responsible for the maintenance of bone turnover throughout life, we investigated bone repair at a site of a critically sized segmental defect in sheep tibia treated with BMSCs loaded onto allografts. The defect was created in the mid-portion of the tibial diaphysis of eight adult sheep, and the sheep were treated with ex-vivo expanded autologous BMSCs isolated from marrow aspirates and loaded onto cortical allografts (n = 4). The treated sheep were compared with control sheep that had been treated with cell-free allografts (n = 4) obtained from donors of the same breed as the receptor sheep. Results: The healing response was monitored by radiographs monthly and by computed tomography and histology at six, ten, fourteen, and eighteen weeks after surgery. For the cell-loaded allografts, union was established more rapidly at the interface between the host bone and the allograft, and the healing process was more conspicuous. Remodeling of the allograft was complete at 18 weeks in the cell-treated animals. Histologically, the marrow cavity was reestablished, with intertrabecular spaces being filled with adipose marrow and with evidence of focal hematopoiesis. Conclusions: Allografts cellularized with AOCs (allografts of osteoprogenitor cells) can generate great clinical outcomes to noncellularized allografts to consolidate, reshape, structurally and morphologically reconstruct bone and bone marrow in a relatively short period of time. These features make this strategy very attractive for clinical use in orthopedic bioengineering
Resumo:
Tissue grafts are implanted in orthopedic surgery every day. In order to minimize infection risk, bone allografts are often delipidated with supercritical CO2 and sterilized prior to implantation. This treatment may, however, impair the mechanical behavior of the bone graft tissue. The goal of this study was to determine clinically relevant mechanical properties of treated/sterilized human trabecular bone grafts, e.g. the apparent modulus, strength, and the ability to absorb energy during compaction. They were compared with results of identical experiments performed previously on untreated/fresh frozen human trabecular bone from the same anatomical site (Charlebois, 2008). We tested the hypothesis that the morphology–mechanical property relationships of treated cancellous allografts are similar to those of fresh untreated bone. The morphology of the allografts was determined by μCT. Subsequently, cylindrical samples were tested in unconfined and confined compression. To account for various morphologies, the experimental data was fitted to phenomenological mechanical models for elasticity, strength, and dissipated energy density based on bone volume fraction (BV/TV) and the fabric tensor determined by MIL. The treatment/sterilization process does not appear to influence bone graft stiffness. However, strength and energy dissipation of the bone grafts were found to be significantly reduced by 36% to 47% and 66% to 81%, respectively, for a broad range of volume fraction (0.14 < BV/TV < 0.39) and degree of anisotropy (1.24 < DA < 2.18). Since the latter properties are strongly dominated by BV/TV, the clinical consequences of this reduction can be compensated by using grafts with lower porosity. The data of this study suggests that an increase of 5–10% in BV/TV is sufficient to compensate for the reduced post-yield mechanical properties of treated/sterilized bone in monotonic compression. In applications where graft stiffness needs to be matched and strength is not a concern, treated allograft with the same BV/TV as an appropriate fresh bone graft may be used.
Resumo:
Background: The relationship between the immune response and red and white blood cell homeostasis is cited in literature, but no studies regarding the balance of these cell populations following maxillary bone-graft surgeries can be found. Aim: The aim of this study was to evaluate the possible impairments in the blood cell balance following fresh-frozen allogeneic bone-graft augmentation procedures in patients who needed maxillary reconstruction prior to implants. Material and Methods: From 33 patients elected to onlay bone grafting procedures, 20 were treated with fresh-frozen bone allografts and 13 with autologous bone grafts. Five blood samples were collected from each patient in a 6-month period (baseline: 14, 30, 90, and 180 days postsurgery), and the hematological parameters (erythrogram, leukogram, and platelets count) were accessed. Results: All evaluated parameters were within the reference values accepted as normal, and significant differences were found for the eosinophils count when comparing the treatments (30 days, p=.035) and when comparing different periods of evaluation (allograft-treated group, baseline×180 days, p≤.05 and 90×180 days, p≤.01; autograft-treated group, 30×90 days, p≤.05 and 30×180 days, p≤.05). Conclusions: Both autologous and fresh-frozen allogeneic bone grafts did not cause any impairment in the red and white blood cell balance, based on quantitative hemogram analysis, in patients subjected to maxillary reconstruction. © 2011 Wiley Periodicals, Inc.
Resumo:
Background: In the absence of autologous bone for harvesting, fresh-frozen bone allografts turned into an alternative for bone reconstruction procedures. Purpose: The purpose of this study was to make a histological analysis of fresh-frozen onlay bone allografts (ALs), compared with autografts, in patients who needed maxillary reconstruction prior to dental implants placement. Materials and Methods: Twelve patients with bone deficiencies (width inferior to 4mm) in the sites where the implants were planned were enrolled in the study. From these, six were elected to be treated with autogenous (AT) bone grafts and six with fresh-frozen bone AL. This last group included the patients who had absence of a convenient amount of bone in donor sites. Each patient received from one to six graft blocks, totalling to 12 ATs and 17 ALs. Seven months after grafting procedures, biopsies of the grafts were made using 2-mm internal diameter trephine burs, and processed for histological analysis. One biopsy was retrieved from each patient. Results: Clinically, all grafts were found to be firm in consistency and well-incorporated to the receptor bed. Histological analysis showed a large amount of necrotic bone surrounded by few spots of new-formed bone in the AL group, suggesting low rate of graft remodeling. In the AT group, an advanced stage of bone remodeling was seen. Conclusions: Human fresh-frozen bone block AL showed clinical compatibility for grafting procedures, although associated to slow remodeling process. Further studies are needed to define, at long term, the remodeling process chronology the clinical longitudinal results for fresh-frozen bone AL. Copyright © 2013 Wiley Periodicals, Inc.
Resumo:
The aim of the current study is to evaluate fresh-frozen human bone allografts (FHBAs) used in vertical ridge augmentation clinically and by computed tomography, and to analyze the resulting bone formation and graft resorption. Sixteen FHBAs were grafted in the maxillae and mandibles of 9 patients. The FHBAs, which were provided by the Musculoskeletal Tissue Bank of Marilia Hospital (Unioss), were frozen at -80A degrees C. After 7 months, dental implants were placed and bone parameters were evaluated. Vertical bone formation was measured by computerized tomography before (T0) and at 7 months (T1) after the surgical procedure. Bone graft resorption was measured clinically from a landmark screw head using a periodontal probe. The results were analyzed by Student's t-test. Significant differences existed in the bone formation values at T0 and T1, with an average change of 4.03 +/- A 1.69 mm. Bone graft resorption values were 1.0 +/- A 0.82 mm (20%). Implants were placed with varying insertion torque values (35-45 Ncm), and achieved primary stability. This study demonstrates that FHBAs promote satisfactory vertical bone formation with a low resorption rates, good density, and primary implant stability.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJECTIVE Over 15 years have passed since an enamel matrix derivative (EMD) was introduced as a biologic agent capable of periodontal regeneration. Histologic and controlled clinical studies have provided evidence for periodontal regeneration and substantial clinical improvements following its use. The purpose of this review article was to perform a systematic review comparing the eff ect of EMD when used alone or in combination with various types of bone grafting material. DATA SOURCES A literature search was conducted on several medical databases including Medline, EMBASE, LILACS, and CENTRAL. For study inclusion, all studies that used EMD in combination with a bone graft were included. In the initial search, a total of 820 articles were found, 71 of which were selected for this review article. Studies were divided into in vitro, in vivo, and clinical studies. The clinical studies were subdivided into four subgroups to determine the eff ect of EMD in combination with autogenous bone, allografts, xenografts, and alloplasts. RESULTS The analysis from the present study demonstrates that while EMD in combination with certain bone grafts is able to improve the regeneration of periodontal intrabony and furcation defects, direct evidence supporting the combination approach is still missing. CONCLUSION Further controlled clinical trials are required to explain the large variability that exists amongst the conducted studies.
Resumo:
For several decades, a dose of 25 kGy of gamma irradiation has been recommended for terminal sterilization of medical products, including bone allografts. Practically, the application of a given gamma dose varies from tissue bank to tissue bank. While many banks use 25 kGy, some have adopted a higher dose, while some choose lower doses, and others do not use irradiation for terminal sterilization. A revolution in quality control in the tissue banking industry has occurred in line with development of quality assurance standards. These have resulted in significant reductions in the risk of contamination by microorganisms of final graft products. In light of these developments, there is sufficient rationale to re-establish a new standard dose, sufficient enough to sterilize allograft bone, while minimizing the adverse effects of gamma radiation on tissue properties. Using valid modifications, several authors have applied ISO standards to establish a radiation dose for bone allografts that is specific to systems employed in bone banking. These standards, and their verification, suggest that the actual dose could be significantly reduced from 25 kGy, while maintaining a valid sterility assurance level (SAL) of 10−6. The current paper reviews the methods that have been used to develop radiation doses for terminal sterilization of medical products, and the current trend for selection of a specific dose for tissue banks.
Resumo:
Introduction: The use of allograft is a matter of huge interest for orthopaedic surgeons, due to the supposed advantages with its use, like decreased surgical time, larger grafts and no donator site morbidity. Objectives: The aim of this article was to review our experience with the use of allografts on ligament reconstruction. We present the technique applied for graft harvest, preparation and storage, as well as the indications for allograft use and the type of procedure in which it was applied. Methods: We revised the records of 46 patients. Results: We used 09 patellar tendons, 09 anterior tibial tendons, 08 calcaneal tendons, 06 quadriceptal tendons and 01 fibular tendon, mainly for multiple ligamentar reconstructions and ACL reviews. Conclusion: The use of allograft seems to be an interesting option for ligamentar reconstruction.
Resumo:
Pós-graduação em Cirurgia Veterinária - FCAV
Resumo:
The use of bone grafts from bone tissue banks, also known as bone allografts, has increased in the last years, although most of its users still have concerns on resources and processing protocols. The objective of this paper was to make a literature review about the use of bone allografts in Dentistry, and also about the legal considerations regarding this biomaterial. Studies regarding the donor selection, the cross-infection risks and processing protocols of this biomaterial are still rare but essential, and allied to those regarding its clinical application, can base its use.
Resumo:
Objective In the last decades aroused the interest for bone tissue bank as an alternative to autogenous grafting, avoiding donor sites morbidity, surgical time, and costs reduction. The purpose of the study was to compare allografts (ALg) with autografts (AUg) using histology, immunochemistry, and tomographic analysis. Material and methods Fifty-six New Zealand White rabbits were submitted to surgical procedures. Twenty animals were donors and 36 were actually submitted to onlay grafting with ALg (experimental group) and AUg (control group) randomly placed bilaterally in the mandible. Six animals of each group were sacrificed at 3, 5, 7, 10, 20, and 60 postoperative days. Immunolabeling was accomplished with osteoprotegerin (OPG); receptor activator of nuclear factor-k ligand (RANKL); alkaline phosphatase (ALP); osteopontin (OPN); vascular endothelial growth factor (VEGF); tartrate-resistant acid phosphatase (TRAP); collagen type I (COL I); and osteocalcin (OC). Density and volume of the grafts was evaluated on tomography obtained at the surgery and sacrifice. Results The ALg and AUg exhibited similar patterns of density and volume throughout the experiments. The intra-group data showed statistical differences at days 7 and 60 in comparison with other time points (P = 0.001), in both groups. A slight graft expansion from fixation until day 20 (P = 0.532) was observed in the AUg group and then resorbed significantly at the day 60 (P = 0.015). ALg volume remained stable until day 7 and decreased at day 10 (P = 0.045). The light microscopy analysis showed more efficient incorporation of AUg onto the recipient bed if compared with the ALg group. The immunohistochemical labeling picked: at days 10 and 20 with OPG in the AUg group and at day 7 with TRAP in the ALg group (P = 0.001 and P = 0.002, respectively). Conclusions ALg and AUg were not differing in patterns of volume and density during entire experiment. Histological data exhibit more efficient AUg incorporation into recipient bed compared with the ALg group. Immunohistochemistry outcomes demonstrated similar pattern for both ALg and AUg groups, except for an increasing resorption activity in the ALg group mediated by TRAP and in the AUg group by higher OPG labeling. However, this latter observation does not seem to influence clinical outcomes.
Resumo:
The aim of this study is to evaluate the efficacy of the application of allogenous bone at the maxillo-mandibular reconstructions for future rehabilitation with dental implants. The patients were submitted to reconstruction of maxilla, using allogeneic bone grafts, in 3 different techniques: onlay grafts for lateral ridge augmentation, onlay and particulate bone for sinus lift grafting, and particulate alone for sinus lift grafts. Clinical and radiographic control was done at the postoperative phase for at least 8 months, until the patient could be submitted to the installation of dental implants. The results showed success in the majority of the cases, and dental implants could be installed. This can be considered an excellent alternative when compared with the use of autogenous grafts; because handling is easier, there is a great amount of material available and a possibility of using local anesthesia, and consequently there is a reduction of patient morbidity. (C) 2008 American Association of Oral and Maxillofacial Surgeons
Resumo:
We assess the effects of chemical processing, ethylene oxide sterilization, and threading on bone surface and mechanical properties of bovine undecalcified bone screws. In addition, we evaluate the possibility of manufacturing bone screws with predefined dimensions. Scanning electronic microscopic images show that chemical processing and ethylene oxide treatment causes collagen fiber amalgamation on the bone surface. Processed screws hold higher ultimate loads under bending and torsion than the in natura bone group, with no change in pull-out strength between groups. Threading significantly reduces deformation and bone strength under torsion. Metrological data demonstrate the possibility of manufacturing bone screws with standardized dimensions.