998 resultados para Bone QCT


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Growth is the opportune time to modify bone accrual. While bone adaptation is known to be dependent on local loading and consequent deformations (strain) of bone, little is known about the effects of sex, and bone-specific physical activity on location-specific cross-sectional bone geometry during growth. To provide more insight we examined bone traits at different locations around tibial cross sections, and along the tibia between individuals who vary in terms of physical activity exposure, sex, and pubertal status. Data from 304 individuals aged 5-29 years (172 male, 132 female) were examined. Peripheral quantitative computed tomography (pQCT) was applied at 4%, 14%, 38%, and 66% of tibial length. Maturity was established by estimating age at peak height velocity (APHV). Loading history was quantified with the bone-specific physical activity questionnaire (BPAQ). Comparisons, adjusted for height, weight and age were made between sex, maturity, and BPAQ tertile groups. Few to no differences were observed between sexes or BPAQ tertiles prior to APHV, whereas marked sexual dimorphism and differences between BPAQ tertiles were observed after APHV. Cross-sectional location-specific differences between BPAQ tertiles were not evident prior to APHV, whereas clear location-specificity was observed after APHV. In conclusion, the skeletal benefits of physical activity are location-specific in the tibia. The present results indicate that the peri- or post-pubertal period is likely a more favourable window of opportunity for enhancing cross-sectional bone geometry than pre puberty. Increased loading during the peri-pubertal period may enhance the bone of both sexes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Summary We investigated the effect of playing regular golf and HRT on lumbar and thoracic vertebral bone parameters (measured by QCT) in 72 post-menopausal women. The main finding of this study was that there was positive interaction between golf and HRT on vertebral body CSA and BMC at the thoracic 12 and lumbar 2 vertebra but not the third and seventh thoracic vertebras.

Introduction Identifying specific exercises that load the spine sufficiently to be osteogenic is an important component of primary osteoporosis prevention. The aim of this study was to determine if in postmenopausal women regular participation in golf resulted in greater paravertebral muscle mass and improved vertebral bone strength.

Methods Forty-seven postmenopausal women who played golf regularly were compared to 25 controls. Bone parameters at the mid-vertebral body were determined by QCT at spinal levels T3, T7, T12 and L2 (cross-sectional area (CSA), total volumetric BMD (vBMD), trabecular vBMD of the central 50% of total CSA, BMC and cortical rim thickness). At T7 and L2, CSA of trunk muscles was determined.

Results There was a positive interaction between golf and HRT for vertebral CSA and BMC at T12 and L2, but not at T3 or T7 (p ranging < 0.02 to 0.07). Current HRT use was associated with a 10–15% greater total and trabecular vBMD at all measured vertebral levels. Paravertebral muscle CSA did not differ between groups. Vertebral CSA was the bone parameter significantly related to muscle CSA.

Conclusion These findings provide preliminary evidence that playing golf may improve lower spine bone strength in postmenopausal women who are using HRT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: It remains uncertain whether long-term participation in regular weight-bearing exercise confers an advantage to bone structure and strength in old age. The aim of this study was to investigate the relationship between lifetime sport and leisure activity participation on bone material and structural properties at the axial and appendicular skeleton in older men (>50 years).

Methods: We used dual-energy X-ray absorptiometry (DXA) to assess hip, spine and ultradistal (UD) radius areal bone mineral density (aBMD) (n=161), quantitative ultrasound (QUS) to measure heel bone quality (n=161), and quantitative computed tomography (QCT) to assess volumetric BMD, bone geometry and strength at the spine (L1–L3) and mid-femur (n=111). Current (>50+ years) and past hours of sport and leisure activity participation during adolescence (13–18 years) and adulthood (19–50 years) were assessed by questionnaire. This information was used to calculate the total time (min) spent participating in sport and leisure activities and an osteogenic index (OI) score for each participant, which provides a measure of participation in weight-bearing activities.

Results:
Regression analysis revealed that a greater lifetime (13–50+ years) and mid-adulthood (19–50 years) OI, but not total time (min), was associated with a greater mid-femur total and cortical area, cortical bone mineral content (BMC), and the polar moment of inertia (I p) and heel VOS (p ranging from <0.05 to <0.01). These results were independent of age, height (or femoral length) and weight (or muscle cross-sectional area). Adolescent OI scores were not found to be significant predictors of bone structure or strength. Furthermore, no significant relationships were detected with areal or volumetric BMD at any site. Subjects were then categorized into either a high (H) or low/non-impact (L) group during adolescence (13–18 years) and adulthood (19–50+ years) according to their OI scores during each of these periods. Three groups were subsequently formed to reflect weight-bearing impact categories during adolescence and then adulthood: LL, HL and HH. Compared to the LL group, mid-femur total and cortical area, cortical BMC and I p were 6.5–14.2% higher in the HH group. No differences were detected between the LL and HL groups.

Conclusions:
In conclusion, these findings indicate that long-term regular participation in sport and leisure activities categorized according to an osteogenic index [but not the total time (min) spent participating in all sport and leisure activities] was an important determinant of bone size, quality and strength, but not BMD, at loaded sites in older men. Furthermore, continued participation in weight-bearing exercise in early to mid-adulthood appears to be important for reducing the risk of low bone strength in old age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long-term effects of calcium and vitamin D supplementation on bone material and structural properties in older men are not known. The aim of this study was to examine the effects of high calcium (1000 mg/day)- and vitamin-D3 (800 IU/day)-fortified milk on cortical and trabecular volumetric BMD (vBMD) and bone geometry at the axial and appendicular skeleton in men aged over 50 years. One hundred and eleven men who were part of a larger 2-year randomized controlled trial had QCT scans of the mid-femur and lumbar spine (L1–L3) to assess vBMD, bone geometry and indices of bone strength [polar moment of inertia (Ipolar)]. After 2 years, there were no significant differences between the milk supplementation and control group for the change in any mid-femur or L1–L3 bone parameters for all men aged over 50 years. However, the mid-femur skeletal responses to the fortified milk varied according to age, with a split of ≤62 versus >62 years being the most significant for discriminating the changes between the two groups. Subsequent analysis revealed that, in the older men (>62 years), the expansion in mid-femur medullary area was 2.8% (P < 0.01) less in the milk supplementation compared to control group, which helped to preserve cortical area in the milk supplementation group (between group difference 1.1%, P < 0.01). Similarly, for mid-femur cortical vBMD and Ipolar, the net loss was 2.3 and 2.8% less in the milk supplementation compared to control group (P < 0.01 and <0.001, respectively). In conclusion, calcium–vitamin-D3-fortified milk may represent an effective strategy to maintain bone strength by preventing endocortical bone loss and slowing the loss in cortical vBMD in elderly men.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have reported previously that long-term participation of weight-bearing exercise is associated with increased QCT-derived cortical bone size and strength in middle-aged and older men, but not whole bone cortical volumetric BMD. However, since bone remodeling and the distribution of loading-induced strains within cortical bone are non-uniform, the aim of this study was to examine the effects of lifetime loading history on cortical bone mass distribution and bone shape in healthy community dwelling middle-aged and older men. We used QCT to assess mid-femur and mid-tibia angular bone mass distribution around its center (polar distribution), the bone density distribution through the cortex (radial distribution), and the ratio between the maximum and minimum moments of inertia (Imax/Imin ratio) in 281 men aged 50 to 79 years. Current (> 50 years) and past (13–50 years) sport and leisure time activity was assessed by questionnaire to calculate an osteogenic index (OI) during adolescence and adulthood. All men were then categorized into a high (H) or low/non impact (L) group according to their OI scores in each period. Three contrasting groups were then formed to reflect weight-bearing impact categories during adolescence and then adulthood: H–H, H–L and L–L. For polar bone mass distribution, bone deposition in the anterolateral, medial and posterior cortices were 6–10% greater at the mid-femur and 9–24% greater at mid-tibia in men in the highest compared to lowest tertile of lifetime loading (p < 0.01– < 0.001). When comparing the influence of contrasting loading history during adolescence and adulthood, there was a graded response between the groups in the distribution of bone mass at the anterior-lateral and posterior regions of the mid-tibia (H–H > H–L > L–L). For radial bone density distribution, there were no statistically significant effects of loading at the mid-femur, but a greater lifetime OI was associated with a non-significant 10–15% greater bone density near the endocortical region of the mid-tibia. In conclusion, a greater lifetime loading history was associated with region-specific adaptations in cortical bone density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Cortical porosity, particularly at the endocortical region, is recognised to play a central role in the pathogenesis of bone fragility. Therefore, the purpose of this study was to: 1) demonstrate how cortical volumetric BMD (vBMD) distribution can be analysed from (p)QCT images and 2) highlight the clinical significance of assessing regional density distribution of cortical bone

Methods: We used pQCT to compare mid-tibial cortical volumetric BMD distribution of 20 young (age 24(SD2) years, mass 77(11) kg, height 178(6) cm) and 25 elderly (72(4) years, 75(9) kg, 172(5) cm) men. Radial and polar cortical vBMD distributions were analysed using a custom built open source analysis tool which allowed the cortex to be divided into three concentric cortical divisions and in 36 cortical sectors originating from the centroid of the bone.

Results:
Mean vBMD did not differ between the groups (1135(16) vs. 1130(28) mg/cm, P=0.696). In contrast, there was a significant age-group by radial division interaction for radial cortical vBMD (P<0.001).

Conclusions:
The proposed analysis method for analysing cortical bone density distribution of pQCT images was effective for detecting regional differences in cortical density between young and elderly men, which would have been missed by just looking at mean vBMD values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While it is widely acknowledged that bones adapt to the site-specific prevalent loading environment, reasonable ways to estimate skeletal loads are not necessarily available. For long bone shafts, muscles acting to bend the bone may provide a more appropriate surrogate of the loading than muscles expected to cause compressive loads. Thus, the aim of this study was to investigate whether mid-thigh muscle cross-sectional area (CSA) was a better predictor of tibial mid-shaft bone strength than mid-tibia muscle CSA in middle aged and older men. 181 Caucasian men aged 50–79 years (mean±SD; 61±7 years) participated in this study. Mid-femoral and mid-tibial bone traits cortical area , density weighted polar moment of area and muscle CSA [cm²] were assessed with computed tomography. Tibial bone traits were positively associated with both the mid-femur (r=0.44 to 0.46, P<0.001) and the mid-tibia muscle CSA (r=0.35 to 0.37, P<0.001). Multivariate regression analysis, adjusting for age, weight, physical activity and femoral length, indicated that mid-femur muscle CSA predicted tibial mid-shaft bone strength indices better thn mid-tibia muscle CSA. In conclusion, the association between a given skeletal site and functionally adjacent muscles may provide a meaningful probe of the site-specific effect of loading on bone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have suggested that areal BMD (aBMD) measured by DXA is elevated in patients with DISH. We used peripheral QCT (pQCT) to assess volumetric BMD (vBMD) and bone geometry of the radius, tibia and the third metacarpal bone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Article preview View full access options BoneKEy Reports | Review Print Email Share/bookmark Finite element analysis for prediction of bone strength Philippe K Zysset, Enrico Dall'Ara, Peter Varga & Dieter H Pahr Affiliations Corresponding author BoneKEy Reports (2013) 2, Article number: 386 (2013) doi:10.1038/bonekey.2013.120 Received 03 January 2013 Accepted 25 June 2013 Published online 07 August 2013 Article tools Citation Reprints Rights & permissions Abstract Abstract• References• Author information Finite element (FE) analysis has been applied for the past 40 years to simulate the mechanical behavior of bone. Although several validation studies have been performed on specific anatomical sites and load cases, this study aims to review the predictability of human bone strength at the three major osteoporotic fracture sites quantified in recently completed in vitro studies at our former institute. Specifically, the performance of FE analysis based on clinical computer tomography (QCT) is compared with the ones of the current densitometric standards, bone mineral content, bone mineral density (BMD) and areal BMD (aBMD). Clinical fractures were produced in monotonic axial compression of the distal radii, vertebral sections and in side loading of the proximal femora. QCT-based FE models of the three bones were developed to simulate as closely as possible the boundary conditions of each experiment. For all sites, the FE methodology exhibited the lowest errors and the highest correlations in predicting the experimental bone strength. Likely due to the improved CT image resolution, the quality of the FE prediction in the peripheral skeleton using high-resolution peripheral CT was superior to that in the axial skeleton with whole-body QCT. Because of its projective and scalar nature, the performance of aBMD in predicting bone strength depended on loading mode and was significantly inferior to FE in axial compression of radial or vertebral sections but not significantly inferior to FE in side loading of the femur. Considering the cumulated evidence from the published validation studies, it is concluded that FE models provide the most reliable surrogates of bone strength at any of the three fracture sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose Femoral fracture is a common medical problem in osteoporotic individuals. Bone mineral density (BMD) is the gold standard measure to evaluate fracture risk in vivo. Quantitative computed tomography (QCT)-based homogenized voxel finite element (hvFE) models have been proved to be more accurate predictors of femoral strength than BMD by adding geometrical and material properties. The aim of this study was to evaluate the ability of hvFE models in predicting femoral stiffness, strength and failure location for a large number of pairs of human femora tested in two different loading scenarios. Methods Thirty-six pairs of femora were scanned with QCT and total proximal BMD and BMC were evaluated. For each pair, one femur was positioned in one-legged stance configuration (STANCE) and the other in a sideways configuration (SIDE). Nonlinear hvFE models were generated from QCT images by reproducing the same loading configurations imposed in the experiments. For experiments and models, the structural properties (stiffness and ultimate load), the failure location and the motion of the femoral head were computed and compared. Results In both configurations, hvFE models predicted both stiffness (R2=0.82 for STANCE and R2=0.74 for SIDE) and femoral ultimate load (R2=0.80 for STANCE and R2=0.85 for SIDE) better than BMD and BMC. Moreover, the models predicted qualitatively well the failure location (66% of cases) and the motion of the femoral head. Conclusions The subject specific QCT-based nonlinear hvFE model cannot only predict femoral apparent mechanical properties better than densitometric measures, but can additionally provide useful qualitative information about failure location.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to develop a GST-based methodology for accurately measuring the degree of transverse isotropy in trabecular bone. Using femoral sub-regions scanned in high-resolution peripheral QCT (HR-pQCT) and clinical-level-resolution QCT, trabecular orientation was evaluated using the mean intercept length (MIL) and the gradient structure tensor (GST) on the HR-pQCT and QCT data, respectively. The influence of local degree of transverse isotropy (DTI) and bone mineral density (BMD) was incorporated into the investigation. In addition, a power based model was derived, rendering a 1:1 relationship between GST and MIL eigenvalues. A specific DTI threshold (DTI thres) was found for each investigated size of region of interest (ROI), above which the estimate of major trabecular direction of the GST deviated no more than 30° from the gold standard MIL in 95% of the remaining ROIs (mean error: 16°). An inverse relationship between ROI size and DTI thres was found for discrete ranges of BMD. A novel methodology has been developed, where transversal isotropic measures of trabecular bone can be obtained from clinical QCT images for a given ROI size, DTI thres and power coefficient. Including DTI may improve future clinical QCT finite-element predictions of bone strength and diagnoses of bone disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patient-specific biomechanical models including local bone mineral density and anisotropy have gained importance for assessing musculoskeletal disorders. However the trabecular bone anisotropy captured by high-resolution imaging is only available at the peripheral skeleton in clinical practice. In this work, we propose a supervised learning approach to predict trabecular bone anisotropy that builds on a novel set of pose invariant feature descriptors. The statistical relationship between trabecular bone anisotropy and feature descriptors were learned from a database of pairs of high resolution QCT and clinical QCT reconstructions. On a set of leave-one-out experiments, we compared the accuracy of the proposed approach to previous ones, and report a mean prediction error of 6% for the tensor norm, 6% for the degree of anisotropy and 19◦ for the principal tensor direction. These findings show the potential of the proposed approach to predict trabecular bone anisotropy from clinically available QCT images.