835 resultados para Body-size Evolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow–fast life-history continuum, and the allometric scaling of generation time to predict a clade's evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution. We evaluate this theory using data on the evolution of clade maximum body sizes in mammals during the Cenozoic. As predicted, clade evolutionary rates and asymptotic maximum sizes are larger in more productive clades (e.g. baleen whales), which represent the fast end of the slow–fast lifestyle continuum, and smaller in less productive clades (e.g. primates). The allometric scaling exponent for generation time fundamentally alters the shape of evolutionary trajectories, so allometric effects should be accounted for in models of phenotypic evolution and interpretations of macroevolutionary body size patterns. This work highlights the intimate interplay between the macroecological and macroevolutionary dynamics underlying the generation and maintenance of morphological diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is accumulating evidence that macroevolutionary patterns of mammal evolution during the Cenozoic follow similar trajectories on different continents. This would suggest that such patterns are strongly determined by global abiotic factors, such as climate, or by basic eco-evolutionary processes such as filling of niches by specialization. The similarity of pattern would be expected to extend to the history of individual clades. Here, we investigate the temporal distribution of maximum size observed within individual orders globally and on separate continents. While the maximum size of individual orders of large land mammals show differences and comprise several families, the times at which orders reach their maximum size over time show strong congruence, peaking in the Middle Eocene, the Oligocene and the Plio-Pleistocene. The Eocene peak occurs when global temperature and land mammal diversity are high and is best explained as a result of niche expansion rather than abiotic forcing. Since the Eocene, there is a significant correlation between maximum size frequency and global temperature proxy. The Oligocene peak is not statistically significant and may in part be due to sampling issues. The peak in the Plio-Pleistocene occurs when global temperature and land mammal diversity are low, it is statistically the most robust one and it is best explained by global cooling. We conclude that the macroevolutionary patterns observed are a result of the interplay between eco-evolutionary processes and abiotic forcing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the hypodermis of a rhabditid nematode such as Caenorhabditis elegans is a single syncytium. The size of this syncytium (as measured by body size) has evolved repeatedly in the rhabditid nematodes. Two cellular mechanisms are important in the evolution of body size: changes in the numbers of cells that fuse with the syncytium, and the extent of its acellular growth. Thus nematodes differ from mammals and other invertebrates in which body size evolution is caused by changes in cell number alone. The evolution of acellular syncytial growth in nematodes is also associated with changes in the ploidy of hypodermal nuclei. These nuclei are polyploid as a consequence of iterative rounds of endoreduplication, and this endocycle has evolved repeatedly. The association between acellular growth and endoreduplication is also seen in C. elegans mutations that interrupt transforming growth factor-β signaling and that result in dwarfism and deficiencies in hypodermal ploidy. The transforming growth factor-β pathway is a candidate for being involved in nematode body size evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AimSmall body size in Madagascar's dwarf and mouse lemurs (Cheirogaleidae) is generally viewed as primitive. We investigated the evolution of body size in this family and in its sister-taxon, the Lepilemuridae, from phylogenetic, ontogenetic and adaptive perspectives. LocationMadagascar. MethodsWe used a phylogenetic method to reconstruct the evolution of body size in lemurs, and allometric regression models of gestation periods and static and growth allometries in Cheirogaleidae and Lepilemuridae to test the hypothesis that dwarfing occurred as a result of truncated ontogeny (progenesis). We also examined adaptive hypotheses relating body size to environmental variability, life history, seasonality of reproduction, hypothermy (use of torpor), and a diet rich in plant exudates. ResultsOur results indicated that cheirogaleids experienced at least four independent events of body size reduction from an ancestor as large as living Lepilemuridae, by means of progenesis. Our interpretation is supported by the paedomorphic appearance and parallel ontogenetic trajectories of the dwarf taxa, as well as their very short gestation periods and increased fecundity. Lepilemur species that occupy more predictable environments are significantly larger than those occupying unpredictable habitats. Main conclusionsCheirogaleidae appear to be paedomorphic dwarfs, a consequence of progenesis, probably as an adaptation to high environmental unpredictability. Although the capacity to use hypothermy is related to small body size, this advantage is unlikely to have driven dwarfing in cheirogaleids. We propose that gummmivory/exudativory co-evolved with body size reduction in this clade, probably from a folivorous ancestor. Their small size is derived, and their suitability as models for the ancestral primate' is therefore dubious.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of life history variation is central to the evolutionary theory. In many ectothermic lineages, including lizards, life history traits are plastic and relate to several sources of variation including body size, which is both a factor and a life history trait likely to modulate reproductive parameters. Larger species within a lineage, for example tend to be more fecund and have larger clutch size, but clutch size may also be influenced by climate, independently of body size. Thus, the study of climatic effects on lizard fecundity is mandatory on the current scenario of global climatic change. We asked how body and clutch size have responded to climate through time in a group of tropical lizards, the Tropidurinae, and how these two variables relate to each other. We used both traditional and phylogenetic comparative methods. Body and clutch size are variable within Tropidurinae, and both traits are influenced by phylogenetic position. Across the lineage, species which evolved larger size produce more eggs and neither trait is influenced by temperature components. A climatic component of precipitation, however, relates to larger female body size, and therefore seems to exert an indirect relationship on clutch size. This effect of precipitation on body size is likely a correlate of primary production. A decrease in fecundity is expected for Tropidurinae species on continental landmasses, which are predicted to undergo a decrease in summer rainfall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Island biogeography has provided fundamental hypotheses in population genetics, ecology and evolutionary biology. Insular populations usually face different feeding conditions, predation pressure, intraspecific and interspecific competition than continental populations. This so-called island syndrome can promote the evolution of specific phenotypes like a small (or large) body size and a light (or dark) colouration as well as influence the evolution of sexual dimorphism. To examine whether insularity leads to phenotypic differentiation in a consistent way in a worldwide-distributed nonmigratory species, we compared body size, body shape and colouration between insular and continental barn owl (Tyto alba) populations by controlling indirectly for phylogeny. This species is suitable because it varies in pheomelanin-based colouration from reddish-brown to white, and it displays eumelanic black spots for which the number and size vary between individuals, populations and species. Females are on average darker pheomelanic and display more and larger eumelanic spots than males. Our results show that on islands barn owls exhibited smaller and fewer eumelanic spots and lighter pheomelanic colouration, and shorter wings than on continents. Sexual dimorphism in pheomelanin-based colouration was less pronounced on islands than continents (i.e. on islands males tended to be as pheomelanic as females), and on small islands owls were redder pheomelanic and smaller in size than owls living on larger islands. Sexual dimorphism in the size of eumelanic spots was more pronounced (i.e. females displayed much larger spots than males) in barn owls living on islands located further away from a continent. Our study indicates that insular conditions drive the evolution towards a lower degree of eumelanism, smaller body size and affects the evolution of sexual dichromatism in melanin-based colour traits. The effect of insularity was more pronounced on body size and shape than on melanic traits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has recently been proposed that life-history evolution is subject to a fundamental size-dependent constraint. This constraint limits the rate at which biomass can be produced so that production per unit of body mass is inevitably slower in larger organisms than in smaller ones. Here we derive predictions for how changes in body size and production rates evolve in different lifestyles subject to this constraint. Predictions are tested by using data on the mass of neonate tissue produced per adult per year in 637 placental mammal species and are generally supported. Compared with terrestrial insectivores with generalized primitive traits, mammals that have evolved more specialized lifestyles have divergent massspecific production rates: (i) increased in groups that specialize on abundant and reliable foods: grazing and browsing herbivores (artiodactyls, lagomorphs, perissoclactyls, and folivorous rodents) and flesh-eating marine mammals (pinnipeds, cetaceans); and (ii) decreased in groups that have lifestyles with reduced death rates: bats, primates, arboreal, fossorial, and desert rodents, bears, elephants, and rhinos. Convergent evolution of groups with similar lifestyles is common, so patterns of productivity across mammalian taxa reflect both ecology and phylogeny. The overall result is that groups with different lifestyles have parallel but offset relationships between production rate and body size. These results shed light on the evolution of the fast-slow life-history continuum, suggesting that variation occurs along two axes corresponding to body size and lifestyle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extinction of dinosaurs at the Cretaceous/Paleogene (K/Pg) boundary was the seminal event that opened the door for the subsequent diversification of terrestrial mammals. Our compilation of maximum body size at the ordinal level by sub-epoch shows a near-exponential increase after the K/Pg. On each continent, the maximum size of mammals leveled off after 40 million years ago and thereafter remained approximately constant. There was remarkable congruence in the rate, trajectory, and upper limit across continents, orders, and trophic guilds, despite differences in geological and climatic history, turnover of lineages, and ecological variation. Our analysis suggests that although the primary driver for the evolution of giant mammals was diversification to fill ecological niches, environmental temperature and land area may have ultimately constrained the maximum size achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Neotropical pitviper genus Bothrops comprises about 40 species, which occur in all main ecosystems of cis-Andean South America. We explored the relationships of body size and form (tail length and stoutness) with macrohabitat use in 20 forms of Bothrops. Sen-ii-arboreal habits appeared only in forest forms. Semi-arboreals are significantly more slender and have longer tails than terrestrials; body size is not significantly different between terrestrials and semi-arboreals. Within Bothrops, independent contrasts for macrohabitat use were significantly correlated with contrasts of tail size (positively) and stoutness (negatively); thus, the more arboreal the species, the longer its tail and the more slender its body. Contrasts of adult body size seems to remain constant over the lower range of macrohabitat use, but to decrease in species of Bothrops which are more arboreal. Reconstructions of character states indicate that: (1) the ancestor of Bothrops was a small, stout, terrestrial species; (2) semi-arboreal habits appeared one to three times in the genus; (3) a decrease in stoutness and an increase in tail length occurred along with an increase in arboreality in some clades. Although macrohabitat use seems to be important in determining body form in Bothrops, our results also indicate that tail size, stoutness and body size may also be affected by selective agents other than macrohabitat use. The selective agents responsible for the shifts in macrohabitat use in Bothrops are still uncertain, although they may have included prey availability and/or predation pressure. The plasticity of macrohabitat use, morphology and body size described in this study may have been key features that facilitated the highly successful ecological diversification of Bothrops in South America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

George Gaylord Simpson famously postulated that much of life's diversity originated as adaptive radiations-more or less simultaneous divergences of numerous lines from a single ancestral adaptive type. However, identifying adaptive radiations has proven difficult due to a lack of broad-scale comparative datasets. Here, we use phylogenetic comparative data on body size and shape in a diversity of animal clades to test a key model of adaptive radiation, in which initially rapid morphological evolution is followed by relative stasis. We compared the fit of this model to both single selective peak and random walk models. We found little support for the early-burst model of adaptive radiation, whereas both other models, particularly that of selective peaks, were commonly supported. In addition, we found that the net rate of morphological evolution varied inversely with clade age. The youngest clades appear to evolve most rapidly because long-term change typically does not attain the amount of divergence predicted from rates measured over short time scales. Across our entire analysis, the dominant pattern was one of constraints shaping evolution continually through time rather than rapid evolution followed by stasis. We suggest that the classical model of adaptive radiation, where morphological evolution is initially rapid and slows through time, may be rare in comparative data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fertilisation of eggs of free-spawning marine invertebrates depends on factors affecting sperm concentration in the field and also on gamete characteristics such as egg size. In the free-spawning intertidal ascidian Pyura stolonifera mean egg size increased with maternal size in 2 separate populations. The largest ascidian produced eggs that were, on average, 50% greater in volume than the eggs produced by the smallest individual studied. There was no evidence to suggest that egg density varied with adult size and egg dry organic weight increased with maternal size. The fertilisation kinetics of this species were strongly affected by the variation in egg size, with the eggs of large individuals requiring much less concentrated sperm to achieve maximal levels of fertilisation success than the eggs of small individuals. We suggest that variation in egg size between individuals of different sizes and ages may be an important factor in determining fertilisation success for ascidians of this species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ectotherm antipredator behaviour might be strongly affected both by body temperature and size: when environmental temperatures do not favour maximal locomotor performance, large individuals may confront predators, whereas small animals may flee, simply because they have no other option. However, integration of body size and temperature effects is rarely approached in the study of antipredator behaviour in vertebrate ectotherms. In the present study we investigated whether temperature affects antipredator responses of tegu lizards, Tupinambis merianae, with distinct body sizes, testing the hypothesis that small tegus (juveniles) run away from predators regardless of the environmental temperature, because defensive aggression may not be an effective predator deterrent, whereas adults, which are larger, use aggressive defence at low temperatures, when running performance might be suboptimal. We recorded responses of juvenile (small) and adult (large) tegu lizards to a simulated predatory attack at five environmental temperatures in the laboratory. Most differences between the two size classes were observed at low temperatures: large tegus were more aggressive overall than were small tegus at all temperatures tested, but at lower temperatures, the small lizards often used escape responses whereas the large ones either adopted a defensive posture or remained inactive. These results provide strong evidence that body size and temperature affect the antipredator responses of vertebrate ectotherms. We discuss the complex and intricate network of evolutionary and ecological parameters that are likely to be involved in the evolution of such interactions. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Habitat use, diet and body-size variation are examined in weevils from Heard Island. with specific attention being given to the Ectemnorhinus viridis species complex. E. viridis shows marked altitudinal variation in body size and vestiture, but there are no consistent associations between body size and diet. nor are there consistent among-individual differences in conventional taxonomic characters. Thus, the status of E. viridis as a single, variable species is maintained. This species occurs from sea level to 600 rn and it feeds on vascular plants and bryophytes. Canonopsis sericeus also feeds on bryophytes and vascular plants and occurs over a narrower altitudinal range. Palirhoeus eatoni is restricted to the surpralittoral zone where it feeds on marine algae and lichens. Bothrometopus brei,is and B. gracilipes both feed on cryptogams, with the former species occurring from sea level to 450 m. and the latter from 50 to 550 m above sea level. In all species, males are smaller than females and there is a size cline such that populations from higher elevations are smaller than those at lower altitudes. This cline is the reverse of that found on the Prince Edward Islands which, unlike Heard Island, lie to the north of the Antarctic Polar Frontal Zone. This difference in body-size clines between weevils on the two island groups is ascribed to the shorter growing season on the colder Heard Island. The information presented here supports previous ideas regarding the evolution of the Ectemnorhinus-group of weevils on the South Indian Ocean Province Islands, although it suggests that subsequent tests of these hypotheses would profit from the inclusion of molecular systematic work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axe latitudinal gradients in regional diversity random or biased with respect to body size? Using data for the New World avifauna, I show that the slope of the increase in regional species richness from the Arctic to the equator is not independent of body size. The increase is steepest among small and medium-sized species, and shallowest among the largest species. This is reflected in latitudinal variation in the shape of frequency distributions of body sizes in regional subsets of the New World avifauna. Because species are added disproportionately in small and medium size classes towards low latitudes, distributions become less widely spread along the body size axis than expected from the number of species. These patterns suggest an interaction between the effects of latitude and body size on species richness, implying that mechanisms which vary with both latitude and body size may be important determinants of high tropical diversity in New World birds.