867 resultados para Body Temperature Regulation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Burrowing mammals usually have low respiratory sensitivity to hypoxia and hypercapnia. However, the interaction between ventilation (V), metabolism and body temperature (Tb) during hypoxic-hypercapnia has never been addressed. We tested the hypothesis that Clyomys bishopi, a burrowing rodent of the Brazilian cerrado, shows a small ventilatory response to hypoxic-hypercapnia, accompanied by a marked drop in Tb and metabolism. V, Tb and O-2 consumption (VO2) of C. bishopi were measured during exposure to air, hypoxia (10% and 7% O-2), hypercapnia (3% and 5% CO2) and hypoxic-hypercapnia (10% O-2 + 3% CO2). Hypoxia of 7% but not 10%, caused a significant increase in V, and a significant drop in Tb. Both hypoxic levels decreased VO2 and 7% O-2 significantly increased V/VO2. Hypercapnia of 5%, but not 3%, elicited a significant increase in V, although no significant change in Tb, VO2 or V/VO2 was detected. A combination of 10% O-2 and 3% CO2 had minor effects on V and Tb, while VO2 decreased and V/VO2 tended to increase. We conclude that C. bishopi has a low sensitivity not only to hypoxia and hypercapnia, but also to hypoxic-hypercapnia, manifested by a biphasic ventilatory response, a drop in metabolism and a tendency to increase V/VO2. The effect of hypoxic-hypercapnia was the summation of the hypoxia and hypercapnia effects, with respiratory responses tending to have hypercapnic patterns while metabolic responses, hypoxic patterns. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Changes in photoperiod, ambient temperature and food availability trigger seasonal acclimatization in physiology and behavior of many animals. In the present study, seasonal adjustments in body mass and in several physiological, hormonal, and biochemical markers were examined in wild-captured plateau pikas (Ochotona curzoniae) from the Qinghai-Tibetan plateau. Our results showed that plateau pikas maintained a relatively constant body mass throughout the year and showed no seasonal changes in body fat mass and circulating levels of serum leptin. However, nonshivering thermogenesis, cytochrome c oxidase activity, and mitochondrial uncoupling protein 1 (UCP1) contents in brown adipose tissues were significantly enhanced in winter. Further, serum leptin levels were positively correlated with body mass and body fat mass while negatively correlated with UCP1 contents. Together, these data suggest that plateau pikas mainly depend on increasing thermogenic capacities, rather than decreasing body mass, to cope with cold, and leptin may play a potential role in their thermogenesis and body mass regulation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Few environmental factors have a larger influence on animal energetics than temperature, a fact that makes thermoregulation a very important process for survival. In general, endothermic species, i.e., mammals and birds, maintain a constant body temperature (Tb) in fluctuating environmental temperatures using autonomic and behavioural mechanisms. Most of the knowledge on thermoregulatory physiology has emerged from studies using mammalian species, particularly rats. However, studies with all vertebrate groups are essential for a more complete understanding of the mechanisms involved in the regulation of Tb. Ectothermic vertebrates-fish, amphibians and reptiles-thermoregulate essentially by behavioural mechanisms. With few exceptions, both endotherms and ectotherms develop fever (a regulated increase in Tb) in response to exogenous pyrogens, and regulated hypothermia (anapyrexia) in response to hypoxia. This review focuses on the mechanisms, particularly neuromediators and regions in the central nervous system, involved in thermoregulation in vertebrates, in conditions of euthermia, fever and anapyrexia. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Introduction: Nursing clinicians are primarily responsible for the monitoring and treatment of increased body temperature. The body temperature of patients during their acute care hospital stay is measured at regular repeated intervals. In the event a patient is assessed with an elevated temperature, a multitude of decisions are required. The action of instigating temperature reducing strategies is based upon the assumption that elevated temperature is harmful and that the strategy employed will have some beneficial effect. Background and Significance: The potential harmful effects of increased body temperature (fever, hyperthermia) following neurological insult are well recognised. Although few studies have investigated this phenomenon in the diagnostic population of non-traumatic subarachnoid haemorrhage, it has been demonstrated that increased body temperature occurs in 41 to 72% of patients with poor clinical outcome. However, in the Australian context the frequency, or other characteristics of increased body temperature, as well as the association between increased body temperature with poor clinical outcome has not been established. Design: This study used a correlational study design to: describe the frequency, duration and timing of increased body temperature; determine the association between increased body temperature and clinical outcome; and describe the clinical interventions used to manage increased body temperature in patients with non-traumatic subarachnoid haemorrhage. A retrospective clinical chart audit was conducted on 43 patients who met the inclusion criteria. Findings: The major findings of this study were: increased body temperature occurred frequently; persisted for a long time; and onset did not occur until 20 hours after primary insult; increased body temperature was associated with death or dependent outcome; and no intervention was recorded in many instances. Conclusion: This study has quantified in a non-traumatic subarachnoid haemorrhage patient population the characteristics of increased body temperature, established an association between increased body temperature with death or dependent outcome and described the current management of elevated temperatures in the Australian context to improve nursing practice, education and research.
Resumo:
We investigated the influence of rectal temperature on the immune system during and after exercise. Ten well-trained male cyclists completed exercise trials (90 min cycling at 60% VO(2max) + 16.1 - km time trial) on three separate occasions: once in 18 degrees C and twice in 32 degrees C. Twenty minutes after the trials in 32 degrees C, the cyclists sat for approximately 20 min in cold water (14 degrees C) on one occasion, whereas on another occasion they sat at room temperature. Rectal temperature increased significantly during cycling in both conditions, and was significantly higher after cycling in 32 degrees C than in 18 degrees C (P < 0.05). Leukocyte counts increased significantly during cycling but did not differ between the conditions. The concentrations of serum interleukin (IL)-6, IL-8 and IL-10, plasma catecholamines, granulocyte-colony stimulating factor, myeloperoxidase and calprotectin increased significantly following cycling in both conditions. The concentrations of serum IL-8 (25%), IL-10 (120%), IL-1 receptor antagonist (70%), tumour necrosis factor-alpha (17%), plasma myeloperoxidase (26%) and norepinephrine (130%) were significantly higher after cycling in 32 degrees C than in 18 degrees C. During recovery from exercise in 32 degrees C, rectal temperature was significantly lower in response to sitting in cold water than at room temperature. However, immune changes during 90 min of recovery did not differ significantly between sitting in cold water and at room temperature. The greater rise in rectal temperature during exercise in 32 degrees C increased the concentrations of serum IL-8, IL-10, IL-1ra, TNF-alpha and plasma myeloperoxidase, whereas the greater decline in rectal temperature during cold water immersion after exercise did not affect immune responses.
Resumo:
Exercise has many health benefits and should be an effective weight loss strategy because it increases energy expenditure. However, the success of exercise in producing and sustaining weight loss is influenced by compensatory changes in energy intake and non-exercise activity, among other factors (see King et al. Obesity 15(6):1373–1383, 2007 for a detailed review). The aim of this chapter is to discuss the evidence describing the relationship between exercise and body weight regulation, with a particular focus on appetite control. Evidence is discussed which demonstrates that weight loss responses to exercise are highly variable between individuals. The mechanisms underlying the relationship between exercise, appetite and energy intake, and hence body weight are also discussed. Some people experience an increase in fasting hunger in response to 12 weeks of supervised exercise. However, this is offset by an increase in meal-related satiety in overweight and obese individuals. It is worth noting that weight loss should not be considered as the only successful outcome of an exercise program. Indeed, exercise, even in the absence of weight loss, is associated with numerous health benefits. Nevertheless, an improved understanding of compensatory responses to exercise is vital so that exercise can be more effectively used in weight management; such an understanding may assist us to devise strategies to sustain greater long-term participation in physical activity.
Resumo:
A neonatal temperature monitoring system operating in subthreshold regime that utilizes time mode signal processing is presented. Resistance deviations in a thermistor due to temperature variations are converted to delay variations that are subsequently quantized by a Delay measurement unit (DMU). The DMU does away with the need for any analog circuitry and is synthesizable entirely from digital logic. An FPGA implementation of the system demonstrates the viability of employing time mode signal processing, and measured results show that temperature resolution better than 0.1 degrees C can be achieved using this approach.
Resumo:
The savanna elephant is the largest extant mammal and often inhabits hot and and environments. Due to their large size, it might be expected that elephants have particular physiological adaptations, such as adjustments to the rhythms of their core body temperature (T-b) to deal with environmental challenges. This study describes for the first time the T-b daily rhythms in savanna elephants. Our results showed that elephants had lower mean T-b values (36.2 +/- 0.49 degrees C) than smaller ungulates inhabiting similar environments but did not have larger or smaller amplitudes of T-b variation (0.40 +/- 0.12 degrees C), as would be predicted by their exposure to large fluctuations in ambient temperature or their large size. No difference was found between the daily T-b rhythms measured under different conditions of water stress. Peak T-b's occurred late in the evening (22: 10) which is generally later than in other large mammals ranging in similar environmental conditions. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We compared body temperature (T-b) daily rhythms in two populations of common spiny mice, Acomys cahirinus, during summer and winter months in relation to increasing dietary salt content. Mice were collected from the North and South facing slopes (NFS and SFS) of the same valley, that are exhibiting mesic and xeric habitats, respectively. During the summer, whilst mice were offered a water source containing 0.9% NaCl, SFS individuals had T-b peak values at 24:00, whereas NFS individuals had peak values at 18:00. When the salinity of the water source was increased, from 0.9 to 2.5% and then 3.5%, the difference between maximal and minimal T-b of both populations increased. In addition, with increased salinity, the T-b daily peak of SFS mice shifted to 18:00. During the winter, the mean daily T-b values of both populations of mice were lower than during the summer. At 0.9% salinity, the NFS mice exhibited a daily T-b variation with a peak at the beginning of the night. However, we did not detect any significant variation in daily T-b in the SFS mice. At 2.5% salinity, the difference between the mean daily T-b of mice from the two slopes increased. In winter we were unable to increase the salinity to 3.5% as the animals began to lose weight rapidly. We suggest that common spiny mice that inhabit these two micro-habitats axe forming two discrete populations that respond differently to the environmental pressures prevailing in each habitat, by evolving different physiological capacities. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Organisms respond to cyclical environmental conditions by entraining their endogenous biological rhythms. Such physiological responses are expected to be substantial for species inhabiting arid environments which incur large variations in daily and seasonal ambient temperature (T). We measured core body temperature (T) daily rhythms of Cape ground squirrels Xerus inauris inhabiting an area of Kalahari grassland for six months from the Austral winter through to the summer. Squirrels inhabited two different areas: an exposed flood plain and a nearby wooded, shady area, and occurred in different social group sizes, defined by the number of individuals that shared a sleeping burrow. Of a suite of environmental variables measured, maximal daily T provided the greatest explanatory power for mean T whereas sunrise had greatest power for T acrophase. There were significant changes in mean T and T acrophase over time with mean T increasing and T acrophase becoming earlier as the season progressed. Squirrels also emerged from their burrows earlier and returned to them later over the measurement period. Greater increases in T, sometimes in excess of 5°C, were noted during the first hour post emergence, after which T remained relatively constant. This is consistent with observations that squirrels entered their burrows during the day to 'offload' heat. In addition, greater T amplitude values were noted in individuals inhabiting the flood plain compared with the woodland suggesting that squirrels dealt with increased environmental variability by attempting to reduce their T-T gradient. Finally, there were significant effects of age and group size on T with a lower and less variable T in younger individuals and those from larger group sizes. These data indicate that Cape ground squirrels have a labile T which is sensitive to a number of abiotic and biotic factors and which enables them to be active in a harsh and variable environment.
Resumo:
Over the last two decades, several genes have been identified that appear to play a role in the regulation of energy homeostasis and body weight. For a small subset of them, a reduction or an absence of expression confers a resistance to the development of obesity. Recently, a knockin mouse for a member of the monocarboxylate transporter (MCT) family, MCT1, was demonstrated to exhibit a typical phenotype of resistance to diet-induced obesity and a protection from its associated metabolic perturbations. Such findings point out at MCTs as putatively new therapeutic targets in the context of obesity. Here, we will review what is known about MCTs and their possible metabolic roles in different organs and tissues. Based on the description of the phenotype of the MCT1 knockin mouse, we will also provide some insights about their putative roles in weight gain regulation.