968 resultados para Bluetooth antenna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A compact coplanar waveguide (CPW) fed uniplanar antenna for Quad-band applications is presented. The Quad-band operation is realized by imposing various current paths in a modified T-shaped radiating element. The antenna covers GSM 900, DCS 1800, IEEE802.11.a, IEEE802.11.b and HiperLAN-2 bands and exhibits good radiation characteristics. This low profile antenna has a dimension of 32mm×31mmwhen printed on a substrate of dielectric constant 4.4 and height 1.6mm. Details of design with experimental and simulated results are presented

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel reduced-size microstrip rectangular patch antenna for Bluetooth operation is presented in this paper. The proposed antenna operates in the 2400 to 2484 MHz ISM Band. Although an air substrate is introduced, antenna occupies a small volume of 33.3×6.6×0.8 mm3. The gain and the impedance bandwidth of the antenna are predicted using a commercial Finite Element Method software package. The predicted results show good agreement with measured data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A double-layer rectangular patch microstrip antenna suitable for Bluetooth applications is investigated. The patch is etched on a separate substrate which is suspended above the ground plane and supported by an MCX connector. The air gap between the patch and the ground plane increases the impedance bandwidth and can be used to tune the resonant frequency. This paper presents experimental results on the effects of various parameters on the antenna characteristics and provides guidelines for the design of such an antenna.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Monitoring pedestrian and cyclists movement is an important area of research in transport, crowd safety, urban design and human behaviour assessment areas. Media Access Control (MAC) address data has been recently used as potential information for extracting features from people’s movement. MAC addresses are unique identifiers of WiFi and Bluetooth wireless technologies in smart electronics devices such as mobile phones, laptops and tablets. The unique number of each WiFi and Bluetooth MAC address can be captured and stored by MAC address scanners. MAC addresses data in fact allows for unannounced, non-participatory, and tracking of people. The use of MAC data for tracking people has been focused recently for applying in mass events, shopping centres, airports, train stations etc. In terms of travel time estimation, setting up a scanner with a big value of antenna’s gain is usually recommended for highways and main roads to track vehicle’s movements, whereas big gains can have some drawbacks in case of pedestrian and cyclists. Pedestrian and cyclists mainly move in built distinctions and city pathways where there is significant noises from other fixed WiFi and Bluetooth. Big antenna’s gains will cover wide areas that results in scanning more samples from pedestrians and cyclists’ MAC device. However, anomalies (such fixed devices) may be captured that increase the complexity and processing time of data analysis. On the other hand, small gain antennas will have lesser anomalies in the data but at the cost of lower overall sample size of pedestrian and cyclist’s data. This paper studies the effect of antenna characteristics on MAC address data in terms of travel-time estimation for pedestrians and cyclists. The results of the empirical case study compare the effects of small and big antenna gains in order to suggest optimal set up for increasing the accuracy of pedestrians and cyclists’ travel-time estimation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A single-feed rectangular-ring microstrip antenna is proposed for indoor communication under the Bluetooth protocol. The dimensions of the antenna together with the location of the feed point are optimized through field simulations in order to cover the Bluetooth bandwidth and to avoid linear polarization. The performance and the efficiency of the antenna are illustrated in a real indoor environment

Relevância:

40.00% 40.00%

Publicador:

Resumo:

compact multihand planar octagonal-shaped microstrip antenna simultaneously suitable for mobile communication and blue tooth application is presented. The antenna provides sufficient isolation benveen the two operating bands and an area reduction of -29 % with respect to a circular patch operating in the same band

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper firstly presents the benefits and critical challenges on the use of Bluetooth and Wi-Fi for crowd data collection and monitoring. The major challenges include antenna characteristics, environment’s complexity and scanning features. Wi-Fi and Bluetooth are compared in this paper in terms of architecture, discovery time, popularity of use and signal strength. Type of antennas used and the environment’s complexity such as trees for outdoor and partitions for indoor spaces highly affect the scanning range. The aforementioned challenges are empirically evaluated by “real” experiments using Bluetooth and Wi-Fi Scanners. The issues related to the antenna characteristics are also highlighted by experimenting with different antenna types. Novel scanning approaches including Overlapped Zones and Single Point Multi-Range detection methods will be then presented and verified by real-world tests. These novel techniques will be applied for location identification of the MAC IDs captured that can extract more information about people movement dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Embedded wireless sensor network (WSN) systems have been developed and used in a wide variety of applications such as local automatic environmental monitoring; medical applications analysing aspects of fitness and health energy metering and management in the built environment as well as traffic pattern analysis and control applications. While the purpose and functions of embedded wireless sensor networks have a myriad of applications and possibilities in the future, a particular implementation of these ambient sensors is in the area of wearable electronics incorporated into body area networks and everyday garments. Some of these systems will incorporate inertial sensing devices and other physical and physiological sensors with a particular focus on the application areas of athlete performance monitoring and e-health. Some of the important physical requirements for wearable antennas are that they are light-weight, small and robust and should also use materials that are compatible with a standard manufacturing process such as flexible polyimide or fr4 material where low cost consumer market oriented products are being produced. The substrate material is required to be low loss and flexible and often necessitates the use of thin dielectric and metallization layers. This paper describes the development of such a wearable, flexible antenna system for ISM band wearable wireless sensor networks. The material selected for the development of the wearable system in question is DE104i characterized by a dielectric constant of 3.8 and a loss tangent of 0.02. The antenna feed line is a 50 Ohm microstrip topology suitable for use with standard, high-performance and low-cost SMA-type RF connector technologies, widely used for these types of applications. The desired centre frequency is aimed at the 2.4GHz ISM band to be compatible with IEEE 802.15.4 Zigbee communication protocols and the Bluetooth standard which operate in this band.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bodyworn antennas are found in a wide range of medical, military and personal communication applications, yet reliable communication from the surface of the human body still presents a range of engineering challenges. At UHF and microwave frequencies, bodyworn antennas can suffer from reduced efficiency due to electromagnetic absorption in tissue, radiation pattern fragmentation and variations in feed-point impedance. The significance and nature of these effects are system specific and depend on the operating frequency, propagation environment and physical constraints on the antenna itself. This paper describes how numerical electromagnetic modelling techniques such as FDTD (finite-difference time-domain) can be used in the design of bodyworn antennas. Examples are presented for 418 MHz, 916 .5 MHz and 2 . 45 GHz, in the context of both biomedical signalling and wireless personal-area networking applications such as the Bluetooth(TM)* wireless technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A compact, planar, wideband antenna designed by modifying the coplanar waveguide is presented in this letter. The proposed antenna finds a wide range of applications including advanced wireless systems (AWS), DCS-1800, DCS-1900/PCS/PHS, WiBro, BlueTooth/WLAN/WiBree/ZigBee, DMB, Global Star Satellite Phones, and digital cordless phones. Wide bandwidth > 75% centered at 2.50 GHz, quasi-omnidirectional radiation coverage along with moderate gain and efficiency are the salient features of the antenna. A prototype fabricated on a substrate with dielectric constant 4.4 and thickness 1.6 mm occupies an area of (31times 64) mm2. Details of antenna design and discussions on the effect of various antenna parameters on the radiation characteristics are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a multiband antenna using a novel fractal design is presented. The antenna structure is formed by inscribing a hexagonal slot within a circle. This base structure is then scaled and arranged within the hexagon along its sides without touching the outer structure. The proposed CPW fed, low profile antenna offers good performance in the 1.65 – 2.59 GHz, 4.16 – 4.52 GHz and 5.54 – 6.42 GHz bands and is suitable for GSM 1800/1900, Bluetooth, IMT advanced systems and upper WLAN applications. The antenna has been fabricated on a substrate of height 1.6 mm and εr = 4.4 and simulation and experimental results are found to be in good agreement

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a high precision testbed for evaluating antenna diversity techniques in an indoor environment. Details concerning mechanical, electrical and electronics hardware and associated measurement software are described. Initial measurement results for two Bluetooth modules operating with co-polar and cross-polar monopole antennas in the ISM 2.4 GHz band are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, experimental investigations are performed into assessing the quality of communication link between Bluetooth devices in an indoor environment, as an initial step of demonstrating benefits of diversity and smart antenna techniques in mobile computing.