972 resultados para Blood volume expansion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously demonstrated that blood volume (BV) expansion decreases saline flow through the gastroduodenal (GD) segment in anesthetized rats (Xavier-Neto J, dos Santos AA & Rola FH (1990) Gut, 31: 1006-1010). The present study attempts to identify the site(s) of resistance and neural mechanisms involved in this phenomenon. Male Wistar rats (N = 97, 200-300 g) were surgically manipulated to create four gut circuits: GD, gastric, pyloric and duodenal. These circuits were perfused under barostatically controlled pressure (4 cmH2O). Steady-state changes in flow were taken to reflect modifications in circuit resistances during three periods of time: normovolemic control (20 min), expansion (10-15 min), and expanded (30 min). Perfusion flow rates did not change in normovolemic control animals over a period of 60 min. BV expansion (Ringer bicarbonate, 1 ml/min up to 5% body weight) significantly (P<0.05) reduced perfusion flow in the GD (10.3 ± 0.5 to 7.6 ± 0.6 ml/min), pyloric (9.0 ± 0.6 to 5.6 ± 1.2 ml/min) and duodenal (10.8 ± 0.4 to 9.0 ± 0.6 ml/min) circuits, but not in the gastric circuit (11.9 ± 0.4 to 10.4 ± 0.6 ml/min). Prazosin (1 mg/kg) and yohimbine (3 mg/kg) prevented the expansion effect on the duodenal but not on the pyloric circuit. Bilateral cervical vagotomy prevented the expansion effect on the pylorus during the expansion but not during the expanded period and had no effect on the duodenum. Atropine (0.5 mg/kg), hexamethonium (10 mg/kg) and propranolol (2 mg/kg) were ineffective on both circuits. These results indicate that 1) BV expansion increases the GD resistance to liquid flow, 2) pylorus and duodenum are important sites of resistance, and 3) yohimbine and prazosin prevented the increase in duodenal resistance and vagotomy prevented it partially in the pylorus

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the effects of fundectomy and pyloroplasty on the delay of gastric emptying (GE) and gastrointestinal (GI) transit of liquid due to blood volume (BV) expansion in awake rats. Male Wistar rats (N = 76, 180-250 g) were first submitted to fundectomy (N = 26), Heinecke-Mikulicz pyloroplasty (N = 25) or SHAM laparotomy (N = 25). After 6 days, the left external jugular vein was cannulated and the animals were fasted for 24 h with water ad libitum. The test meal was administered intragastrically (1.5 ml of a phenol red solution, 0.5 mg/ml in 5% glucose) to normovolemic control animals and to animals submitted to BV expansion (Ringer-bicarbonate, iv infusion, 1 ml/min, volume up to 5% body weight). BV expansion decreased GE and GI transit rates in SHAM laparotomized animals by 52 and 35.9% (P<0.05). Fundectomy increased GE and GI transit rates by 61.1 and 67.7% (P<0.05) and prevented the effect of expansion on GE but not on GI transit (13.9% reduction, P<0.05). Pyloroplasty also increased GE and GI transit rates by 33.9 and 44.8% (P<0.05) but did not prevent the effect of expansion on GE or GI transit (50.7 and 21.1% reduction, P<0.05). Subdiaphragmatic vagotomy blocked the effect of expansion on GE and GI transit in both SHAM laparotomized animals and animals submitted to pyloroplasty. In conclusion 1) the proximal stomach is involved in the GE delay due to BV expansion but is not essential for the establishment of a delay in GI transit, which suggests the activation of intestinal resistances, 2) pyloric modulation was not apparent, and 3) vagal pathways are involved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study evaluates the effect of blood volume expansion on the gastrointestinal transit of a charchoal meal (2.5 ml of an aqueous suspension consisting of 5% charcoal and 5% gum arabic) in awake male Wistar rats (200-270 g). On the day before the experiments, the rats were anesthetized with ether, submitted to left jugular vein cannulation and fasted with water ad libitum until 2 h before the gastrointestinal transit measurement. Blood volume expansion by iv infusion of 1 ml/min Ringer bicarbonate in volumes of 3, 4 or 5% body weight delayed gastrointestinal transit at 10 min after test meal administration by 21.3-26.7% (P<0.05), but no effect was observed after 1 or 2% body weight expansion. The effect of blood volume expansion (up to 5% body weight) on gastrointestinal transit lasted for at least 60 min (P<0.05). Mean arterial pressure increased transiently and central venous pressure increased and hematocrit decreased (P<0.05). Subdiaphragmatic vagotomy and yohimbine (3 mg/kg) prevented the delay caused by expansion on gastrointestinal transit, while atropine (0.5 mg/kg), L-NAME (2 mg/kg), hexamethonium (10 mg/kg), prazosin (1 mg/kg) or propranolol (2 mg/kg) were ineffective. These data show that blood volume expansion delays the gastrointestinal transit of a charcoal meal and that vagal and yohimbine-sensitive pathways appear to be involved in this phenomenon. The delay in gastrointestinal transit observed here, taken together with the modifications of gastrointestinal permeability to salt and water reported by others, may be part of the mechanisms involved in liquid excess management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central nervous system plays an important role in the control of renal sodium excretion. We present here a brief review of physiologic regulation of hydromineral balance and discuss recent results from our laboratory that focus on the participation of nitrergic, vasopressinergic, and oxytocinergic systems in the regulation of water and sodium excretion under different salt intake and hypertonic blood volume expansion (BVE) conditions. High sodium intake induced a significant increase in nitric oxide synthase (NOS) activity in the medial basal hypothalamus and neural lobe, while a low sodium diet decreased NOS activity in the neural lobe, suggesting that central NOS is involved in the control of sodium balance. An increase in plasma concentrations in vasopressin (AVP), oxytocin (OT), atrial natriuretic peptide (ANP), and nitrate after hypertonic BVE was also demonstrated. The central inhibition of NOS by L-NAME caused a decrease in plasma AVP and no change in plasma OT or ANP levels after BVE. These data indicate that the increase in AVP release after hypertonic BVE depends on nitric oxide production. In contrast, the pattern of OT secretion was similar to that of ANP secretion, supporting the view that OT is a neuromodulator of ANP secretion during hypertonic BVE. Thus, neurohypophyseal hormones and ANP are secreted under hypertonic BVE in order to correct the changes induced in blood volume and osmolality, and the secretion of AVP in this particular situation depends on NOS activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the involvement of GABAergic mechanisms of the central amygdaloid nucleus (CeA) in unanesthetized rats subjected to acute isotonic or hypertonic blood volume expansion (BVE). Male Wistar rats bearing cannulas unilaterally implanted in the CeA were treated with vehicle, muscimol (0.2 nmol/0.2 µL) or bicuculline (1.6 nmol/0.2 µL) in the CeA, followed by isotonic or hypertonic BVE (0.15 or 0.3 M NaCl, 2 mL/100 g body weight over 1 min). The vehicle-treated group showed an increase in sodium excretion, urinary volume, plasma oxytocin (OT), and atrial natriuretic peptide (ANP) levels compared to control rats. Muscimol reduced the effects of BVE on sodium excretion (isotonic: 2.4 ± 0.3 vs vehicle: 4.8 ± 0.2 and hypertonic: 4.0 ± 0.7 vs vehicle: 8.7 ± 0.6 µEq·100 g-1·40 min-1); urinary volume after hypertonic BVE (83.8 ± 10 vs vehicle: 255.6 ± 16.5 µL·100 g-1·40 min-1); plasma OT levels (isotonic: 15.3 ± 0.6 vs vehicle: 19.3 ± 1 and hypertonic: 26.5 ± 2.6 vs vehicle: 48 ± 3 pg/mL), and ANP levels (isotonic: 97 ± 12.8 vs vehicle: 258.3 ± 28.1 and hypertonic: 160 ± 14.6 vs vehicle: 318 ± 16.3 pg/mL). Bicuculline reduced the effects of isotonic or hypertonic BVE on urinary volume and ANP levels compared to vehicle-treated rats. However, bicuculline enhanced the effects of hypertonic BVE on plasma OT levels. These data suggest that CeA GABAergic mechanisms are involved in the control of ANP and OT secretion, as well as in sodium and water excretion in response to isotonic or hypertonic blood volume expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the involvement of serotonergic mechanisms of the lateral parabrachial nucleus (LPBN) in the control of sodium (Na+) excretion, potassium (K+) excretion, and urinary volume in unanesthetized rats subjected to acute isotonic blood volume expansion (0.15 M NaCl, 2 ml/100 g of body wt over 1 min) or control rats. Plasma oxytocin (OT), vasopressin (VP), and atrial natriuretic peptide (ANP) levels were also determined in the same protocol. Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used. In rats treated with vehicle in the LPBN, blood volume expansion increased urinary volume, Na+ and K+ excretion, and also plasma ANP and OT. Bilateral injections of serotonergic receptor antagonist methysergide (1 or 4 mu g/200 eta 1) into the LPBN reduced the effects of blood volume expansion on increased Na+ and K+ excretion and urinary volume, while LPBN injections of serotonergic 5-HT2a/HT2c receptor agonist, 2.5-dimetoxi-4-iodoamphetamine hydrobromide (DOI;1 or 5 mu g/200 eta 1) enhanced the effects of blood volume expansion on Na+ and K+ excretion and urinary volume. Methysergide (4 mu g) into the LPBN decreased the effects of blood volume expansion on plasma ANP and OT, while DOI (5 mu g) increased them. The present results suggest the involvement of LPBN serotonergic mechanisms in the regulation of urinary sodium, potassium and water excretion, and hormonal responses to acute isotonic blood volume expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence has shown that the serotonergic mechanism of the lateral parabrachial nucleus (LPBN) participates in the regulation of renal and hormonal responses to isotonic blood volume expansion (BVE). We investigated the BVE-induced Fos activation along forebrain and hindbrain nuclei and particularly within the serotonergic clusters of the raphe system that directly project to the LPBN. We also examined whether there are changes in the concentration of serotonin (5HT) within the raphe nucleus in response to the same stimulus. With this purpose, we analyzed the cells doubly labeled for Fos and Fluorogold (FG) following BVE (NaCl 0.15 M, 2 ml/100 g b.w., 1 min) 7 days after FG injection into the LPBN. Compared with the control group, blood volume-expanded rats showed a significant greater number of Fos-FG double-labeled cells along the nucleus of the solitary tract, locus coeruleus, hypothalamic paraventricular nucleus, central extended amygdala complex, and dorsal raphe nucleus (DRN) cells. Our study also showed an increase in the number of serotonergic DRN neurons activated in response to isotonic BVE. We also observed decreased levels of 5HT and its metabolite 5-hydroxyindoleacetic acid (measured by high-pressure liquid chromatography) within the raphe nucleus 15 min after BVE. Given our previous evidence on the role of the serotonergic system in the LPBN after BVE, the present morphofunctional findings suggest the existence of a key pathway (DRN-LPBN) that may control BVE response through the modulation of 5HT release. (c) 2008 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of a circadian rhythm of atrial natriuretic peptide (ANP) in humans is controversial. We studied the plasma ANP response to isotonic blood volume expansion in the morning and in the afternoon and its relationship with adrenocorticotropic hormone (ACTH)-cortisol diurnal variation in seven normal subjects. Basal plasma ANP level was similar in the morning (19.6 ± 2.4 pg/ml) and in the afternoon (21.8 ± 4.8 pg/ml). The ANP peak obtained with saline infusion (0.9% NaCl, 12 ml/kg) in the morning (49.4 ± 8 pg/ml) did not differ from that obtained in the afternoon (60.3 ± 10.1 pg/ml). There was no correlation between the individual mean cortisol and ACTH levels and the ANP peak obtained with saline infusion. These data indicate no diurnal variation in plasma ANP secretion induced by blood volume expansion and no relationship between plasma ANP peak and ACTH-cortisol diurnal variation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have observed that acute blood volume expansion increases the gastroduodenal resistance to the flow of liquid in anesthetized dogs, while retraction decreases it (Santos et al. (1991) Acta Physiologica Scandinavica, 143: 261-269). This study evaluates the effect of blood volume expansion and retraction on the gastric emptying of liquid in awake rats using a modification of the technique of Scarpignato (1980) (Archives Internationales de Pharmacodynamie et de Therapie, 246: 286-294). Male Wistar rats (180-200 g) were fasted for 16 h with water ad libitum and 1.5 ml of the test meal (0.5 mg/ml phenol red solution in 5% glucose) was delivered to the stomach immediately after random submission to one of the following protocols: 1) normovolemic control (N = 22), 2) expansion (N = 72) by intravenous infusion (1 ml/min) of Ringer-bicarbonate solution, volumes of 1, 2, 3 or 5% body weight, or 3) retraction (N = 22) by controlled bleeding (1.5 ml/100 g). Gastric emptying of liquid was inhibited by 19-51.2% (P<0.05) after blood volume expansion (volumes of 1, 2, 3 or 5% body weight). Blood volume expansion produced a sustained increase in central venous pressure while mean arterial pressure was transiently increased during expansion (P<0.05). Blood volume retraction increased gastric emptying by 28.5-49.9% (P<0.05) and decreased central venous pressure and mean arterial pressure (P<0.05). Infusion of the shed blood 10 min after bleeding reversed the effect of retraction on gastric emptying. These findings suggest that gastric emptying of liquid is subject to modulation by the blood volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our previous studies have shown that stimulation of the anterior ventral third ventricular region increases atrial natriuretic peptide (ANP) release, whereas lesions of this structure, the median eminence, or removal of the neural lobe of the pituitary block ANP release induced by blood volume expansion (BVE). These results indicate that participation of the central nervous system is crucial in these responses, possibly through mediation by neurohypophysial hormones. In the present research we investigated the possible role of oxytocin, one of the two principal neurohypophysial hormones, in the mediation of ANP release. Oxytocin (1-10 nmol) injected i.p. caused significant, dose-dependent increases in urinary osmolality, natriuresis, and kaliuresis. A delayed antidiuretic effect was also observed. Plasma ANP concentrations increased nearly 4-fold (P < 0.01) 20 min after i.p. oxytocin (10 nmol), but there was no change in plasma ANP values in control rats. When oxytocin (1 or 10 nmol) was injected i.v., it also induced a dose-related increase in plasma ANP at 5 min (P < 0.001). BVE by intra-atrial injection of isotonic saline induced a rapid (5 min postinjection) increase in plasma oxytocin and ANP concentrations and a concomitant decrease in plasma arginine vasopressin concentration. Results were similar with hypertonic volume expansion, except that this induced a transient (5 min) increase in plasma arginine vasopressin. The findings are consistent with the hypothesis that baroreceptor activation of the central nervous system by BVE stimulates the release of oxytocin from the neurohypophysis. This oxytocin then circulates to the right atrium to induce release of ANP, which circulates to the kidney and induces natriuresis and diuresis, which restore body fluid volume to normal levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secretion of vasopressin (VP), oxytocin (OT) and atrial natriuretic peptide (ANP) is an essential mechanism for the maintenance of hydromineral homeostasis. Secretion of these hormones is modulated by several circulating factors, including oestradiol. However, it remains unclear how oestradiol exerts this modulation. In the present study we investigated the participation of oestradiol in the secretion of VP, OT and ANP and in activation of vasopressinergic and oxytocinergic neurones of the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus in response to extracellular volume expansion (EVE). For this purpose, ovariectomised (OVX) rats treated for 7 days with vehicle (corn oil, 0.1 ml/rat, OVX+O group) or oestradiol (oestradiol cypionate, 10 mu g/kg, OVX+E group) were subjected to either isotonic (0.15 m NaCl, 2 ml/100 g b.w., i.v.) or hypertonic (0.30 m NaCl, 2 ml/100 g b.w., i.v.) EVE. Blood samples were collected for plasma VP, OT and ANP determination. Another group of rats was subjected to cerebral perfusion, and brain sections were processed for c-Fos-VP and c-Fos-OT double-labelling immunohistochemistry. In OVX+O rats, we observed that both isotonic and hypertonic EVE increased plasma OT and ANP concentrations, although no changes were observed in VP secretion. Oestradiol replacement did not alter hormonal secretion in response to isotonic EVE, but it increased VP secretion and potentiated plasma OT and ANP concentrations in response to hypertonic EVE. Immunohistochemical data showed that, in the OVX+O group, hypertonic EVE increased the number of c-Fos-OT and c-Fos-VP double-labelled neurones in the PVN and SON. Oestradiol replacement did not alter neuronal activation in response to isotonic EVE, but it potentiated vasopressinergic and oxytocinergic neuronal activation in the medial magnocellular PVN (PaMM) and SON. Taken together, these results suggest that oestradiol increases the responsiveness of vasopressinergic and oxytocinergic magnocellular neurones in the PVN and SON in response to osmotic stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesized that acute volume expansion by saline infusion triggers the release of endothelin-1. Bolus intravenous saline infusion (8 mL/min) in six groups of conscious Wistar rats and spontaneously hypertensive rats did not change mean arterial pressure or heart rate (n = 8 to 12). At 1 min after infusion, the plasma endothelin-1 level was significantly increased in Wistar rats and in spontaneously hypertensive rats by 42% and 61%, respectively (unpaired data). In 12 Wistar rats, the endothelin-1 level increased from 0.68 +/- 0.13 to 1.19 +/- 0.17 fmol/mL (mean +/- SEM, P <.0001, paired data). Thus, acute volume load by rapid saline infusion increases plasma endothelin-1 levels. Vasoconstriction induced by endothelin-1 may counteract enhanced circumferential stretch created by volume expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] With altitude acclimatization, blood hemoglobin concentration increases while plasma volume (PV) and maximal cardiac output (Qmax) decrease. This investigation aimed to determine whether reduction of Qmax at altitude is due to low circulating blood volume (BV). Eight Danish lowlanders (3 females, 5 males: age 24.0 +/- 0.6 yr; mean +/- SE) performed submaximal and maximal exercise on a cycle ergometer after 9 wk at 5,260 m altitude (Mt. Chacaltaya, Bolivia). This was done first with BV resulting from acclimatization (BV = 5.40 +/- 0.39 liters) and again 2-4 days later, 1 h after PV expansion with 1 liter of 6% dextran 70 (BV = 6.32 +/- 0.34 liters). PV expansion had no effect on Qmax, maximal O2 consumption (VO2), and exercise capacity. Despite maximal systemic O2 transport being reduced 19% due to hemodilution after PV expansion, whole body VO2 was maintained by greater systemic O2 extraction (P < 0.05). Leg blood flow was elevated (P < 0.05) in hypervolemic conditions, which compensated for hemodilution resulting in similar leg O2 delivery and leg VO2 during exercise regardless of PV. Pulmonary ventilation, gas exchange, and acid-base balance were essentially unaffected by PV expansion. Sea level Qmax and exercise capacity were restored with hyperoxia at altitude independently of BV. Low BV is not a primary cause for reduction of Qmax at altitude when acclimatized. Furthermore, hemodilution caused by PV expansion at altitude is compensated for by increased systemic O2 extraction with similar peak muscular O2 delivery, such that maximal exercise capacity is unaffected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disruption of guanylyl cyclase-A (GC-A) results in mice displaying an elevated blood pressure, which is not altered by high or low dietary salt. However, atrial natriuretic peptide (ANP), a proposed ligand for GC-A, has been suggested as critical for the maintenance of normal blood pressure during high salt intake. In this report, we show that infusion of ANP results in substantial natriuresis and diuresis in wild-type mice but fails to cause significant changes in sodium excretion or urine output in GC-A-deficient mice. ANP, therefore, appears to signal through GC-A in the kidney. Other natriuretic/diuretic factors could be released from the heart. Therefore, acute volume expansion was used as a means to cause release of granules from the atrium of the heart. That granule release occurred was confirmed by measurements of plasma ANP concentrations, which were markedly elevated in both wild-type and GC-A-null mice. After volume expansion, urine output as well as urinary sodium and cyclic GMP excretion increased rapidly and markedly in wild-type mice, but the rapid increases were abolished in GC-A-deficient animals. These results strongly suggest that natriuretic/diuretic factors released from the heart function exclusively through GC-A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study tested whether myocardial extracellular volume (ECV) is increased in patients with hypertension and atrial fibrillation (AF) undergoing pulmonary vein isolation and whether there is an association between ECV and post-procedural recurrence of AF. Hypertension is associated with myocardial fibrosis, an increase in ECV, and AF. Data linking these findings are limited. T1 measurements pre-contrast and post-contrast in a cardiac magnetic resonance (CMR) study provide a method for quantification of ECV. Consecutive patients with hypertension and recurrent AF referred for pulmonary vein isolation underwent a contrast CMR study with measurement of ECV and were followed up prospectively for a median of 18 months. The endpoint of interest was late recurrence of AF. Patients had elevated left ventricular (LV) volumes, LV mass, left atrial volumes, and increased ECV (patients with AF, 0.34 ± 0.03; healthy control patients, 0.29 ± 0.03; p < 0.001). There were positive associations between ECV and left atrial volume (r = 0.46, p < 0.01) and LV mass and a negative association between ECV and diastolic function (early mitral annular relaxation [E'], r = -0.55, p < 0.001). In the best overall multivariable model, ECV was the strongest predictor of the primary outcome of recurrent AF (hazard ratio: 1.29; 95% confidence interval: 1.15 to 1.44; p < 0.0001) and the secondary composite outcome of recurrent AF, heart failure admission, and death (hazard ratio: 1.35; 95% confidence interval: 1.21 to 1.51; p < 0.0001). Each 10% increase in ECV was associated with a 29% increased risk of recurrent AF. In patients with AF and hypertension, expansion of ECV is associated with diastolic function and left atrial remodeling and is a strong independent predictor of recurrent AF post-pulmonary vein isolation.