924 resultados para Block Permutation Cipher
Resumo:
In this article we discuss a possibility to use genetic algorithms in cryptanalysis. We developed and described the genetic algorithm for finding the secret key of a block permutation cipher. In this case key is a permutation of some first natural numbers. Our algorithm finds the exact key’s length and the key with controlled accuracy. Evaluation of conducted experiment’s results shows that the almost automatic cryptanalysis is possible.
Resumo:
The purpose of the research is to investigate the emerging data security methodologies that will work with most suitable applications in the academic, industrial and commercial environments. Of several methodologies considered for Advanced Encryption Standard (AES), MARS (block cipher) developed by IBM, has been selected. Its design takes advantage of the powerful capabilities of modern computers to allow a much higher level of performance than can be obtained from less optimized algorithms such as Data Encryption Standards (DES). MARS is unique in combining virtually every design technique known to cryptographers in one algorithm. The thesis presents the performance of 128-bit cipher flexibility, which is a scaled down version of the algorithm MARS. The cryptosystem used showed equally comparable performance in speed, flexibility and security, with that of the original algorithm. The algorithm is considered to be very secure and robust and is expected to be implemented for most of the applications.
Resumo:
Nonparametric simple-contrast estimates for one-way layouts based on Hodges-Lehmann estimators for two samples and confidence intervals for all contrasts involving only two treatments are found in the literature.Tests for such contrasts are performed from the distribution of the maximum of the rank sum between two treatments. For random block designs, simple contrast estimates based on Hodges-Lehmann estimators for one sample are presented. However, discussions concerning the significance levels of more complex contrast tests in nonparametric statistics are not well outlined.This work aims at presenting a methodology to obtain p-values for any contrast types based on the construction of the permutations required by each design model using a C-language program for each design type. For small samples, all possible treatment configurations are performed in order to obtain the desired p-value. For large samples, a fixed number of random configurations are used. The program prompts the input of contrast coefficients, but does not assume the existence or orthogonality among them.In orthogonal contrasts, the decomposition of the value of the suitable statistic for each case is performed and it is observed that the same procedure used in the parametric analysis of variance can be applied in the nonparametric case, that is, each of the orthogonal contrasts has a chi(2) distribution with one degree of freedom. Also, the similarities between the p-values obtained for nonparametric contrasts and those obtained through approximations suggested in the literature are discussed.
Resumo:
A method is proposed to offer privacy in computer communications, using symmetric product block ciphers. The security protocol involved a cipher negotiation stage, in which two communicating parties select privately a cipher from a public cipher space. The cipher negotiation process includes an on-line cipher evaluation stage, in which the cryptographic strength of the proposed cipher is estimated. The cryptographic strength of the ciphers is measured by confusion and diffusion. A method is proposed to describe quantitatively these two properties. For the calculation of confusion and diffusion a number of parameters are defined, such as the confusion and diffusion matrices and the marginal diffusion. These parameters involve computationally intensive calculations that are performed off-line, before any communication takes place. Once they are calculated, they are used to obtain estimation equations, which are used for on-line, fast evaluation of the confusion and diffusion of the negotiated cipher. A technique proposed in this thesis describes how to calculate the parameters and how to use the results for fast estimation of confusion and diffusion for any cipher instance within the defined cipher space.
Resumo:
Isosorbide succinate moieties were incorporated into poly(L-lactide) (PLLA) backbone in order to obtain a new class of biodegradable polymer with enhanced properties. This paper describes the synthesis and characterization of four types of low molecular weight copolymers. Copolymer I was obtained from monomer mixtures of L-lactide, isosorbide, and succinic anhydride; II from oligo(L-lactide) (PLLA), isosorbide, and succinic anhydride; III from oligo(isosorbide succinate) (PIS) and L-lactide; and IV from transesterification reactions between PLLA and PIS. MALDI-TOFMS and 13C-NMR analyses gave evidence that co-oligomerization was successfully attained in all cases. The data suggested that the product I is a random co-oligomer and the products II-IV are block co-oligomers.
Resumo:
We calculate the entanglement entropy of blocks of size x embedded in a larger system of size L, by means of a combination of analytical and numerical techniques. The complete entanglement entropy in this case is a sum of three terms. One is a universal x- and L-dependent term, first predicted by Calabrese and Cardy, the second is a nonuniversal term arising from the thermodynamic limit, and the third is a finite size correction. We give an explicit expression for the second, nonuniversal, term for the one-dimensional Hubbard model, and numerically assess the importance of all three contributions by comparing to the entropy obtained from fully numerical diagonalization of the many-body Hamiltonian. We find that finite-size corrections are very small. The universal Calabrese-Cardy term is equally small for small blocks, but becomes larger for x > 1. In all investigated situations, however, the by far dominating contribution is the nonuniversal term stemming from the thermodynamic limit.
Resumo:
The general flowshop scheduling problem is a production problem where a set of n jobs have to be processed with identical flow pattern on in machines. In permutation flowshops the sequence of jobs is the same on all machines. A significant research effort has been devoted for sequencing jobs in a flowshop minimizing the makespan. This paper describes the application of a Constructive Genetic Algorithm (CGA) to makespan minimization on flowshop scheduling. The CGA was proposed recently as an alternative to traditional GA approaches, particularly, for evaluating schemata directly. The population initially formed only by schemata, evolves controlled by recombination to a population of well-adapted structures (schemata instantiation). The CGA implemented is based on the NEH classic heuristic and a local search heuristic used to define the fitness functions. The parameters of the CGA are calibrated using a Design of Experiments (DOE) approach. The computational results are compared against some other successful algorithms from the literature on Taillard`s well-known standard benchmark. The computational experience shows that this innovative CGA approach provides competitive results for flowshop scheduling; problems. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with the traditional permutation flow shop scheduling problem with the objective of minimizing mean flowtime, therefore reducing in-process inventory. A new heuristic method is proposed for the scheduling problem solution. The proposed heuristic is compared with the best one considered in the literature. Experimental results show that the new heuristic provides better solutions regarding both the solution quality and computational effort.
Resumo:
A series of new phenyl-based conjugated copolymers has been synthesized and investigated by vibrational and photoluminescence spectroscopy (PL). The materials are: poly( 1,4-phenylene-alt-3,6-pyridazine) (COP-PIR), poly(9,9-dioctylfluorene)-co-quaterphenylene (COP-PPP) and poly[(1,4-phenylene-alt-3,6-pyridazine)-co-(1,4-phenylene-alt-9,9-dioctylfluorene)] (COP-PIR-FLUOR), with 3.5% of fluorene. COP-PPP and COP-PIR-FLUOR have high fluorescence quantum yields in solution. Infrared and Raman spectra were used to check the chemical structure of the compounds. The copolymers exhibit blue emission ranging front 2.8 to 3.6 eV when excited at E(exc)=4.13 eV. Stokes-shift Values were estimated on pristine samples in their condensed state from steady-state PL-emission and PL-excitation spectra. They suggest a difference in the torsional angle between the molecular configuration of the polymer blocks at the absorption and PL transitions and also in the photoexcitation diffusion. Additionally, the time-resolved PL of these materials has been investigated by using 100 fs laser pulses at E(exc)=4.64 eV and a streak camera. Results show very fast biexponential kinetics for the two fluorene-based polymers with decay times below 300 ps indicating both intramolecular, fast radiative recombination and migration of photogenerated electron-hole pairs. By contrast, the PL of COP-PIR is less intense and longer lived, indicating that excitons are confined to the chains in this polymer. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work, the rheological behavior of block copolymers with different morphologies (lamellar, cylindrical, spherical, and disordered) and their clay-containing nanocomposites was studied using small amplitude oscillatory shear. The copolymers studied were one asymmetric starblock styrene-butadiene-styrene copolymer and four styrene-ethylene/butylenes-styrene copolymers with different molecular architectures, one of them being modified with maleic anhydride. The nanocomposites of those copolymers were prepared by adding organophilic clay using three different preparation techniques: melt mixing, solution casting, and a hybrid melt mixing-solution technique. The nanocomposites were characterized by X-ray diffraction and transmission electron microscopy, and their viscoelastic properties were evaluated and compared to the ones of the pure copolymers. The influence of copolymer morphology and presence of clay on the storage modulus (G`) curves was studied by the evaluation of the changes in the low frequency slope of log G` x log omega (omega: frequency) curves upon variation of temperature and clay addition. This slope may be related to the degree of liquid- or solid-like behavior of a material. It was observed that at temperatures corresponding to the ordered state, the rheological behavior of the nanocomposites depended mainly on the viscoelasticity of each type of ordered phase and the variation of the slope due to the addition of clay was small. For temperatures corresponding to the disordered state, however, the rheological behavior of the copolymer nanocomposites was dictated mostly by the degree of clay dispersion: When the clay was well dispersed, a strong solid-like behavior corresponding to large G` slope variations was observed.
Resumo:
The water activity of aqueous solutions of EO-PO block copolymers of six different molar masses and EO/PO ratios and of maltodextrins of three different molar masses was determined at 298.15 K. The results showed that these aqueous solutions present a negative deviation from Raoult`s law. The Flory-Huggins and UNIFAC excess Gibbs energy models were employed to model the experimental data. While a good agreement was obtained with the Flory-Huggins equation, discrepancies were observed when predicting the experimental behavior with the UNIFAC model. The water activities of ternary systems formed by a synthetic polymer, maltodextrin and water were also measured and used to test the predictive capability of both models.
Resumo:
This paper presents the possible alternative removal options for the development of safe drinking water supply in the trace elements affected areas. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causes various adverse effects on living bodies. Performance of three filter bed method was evaluated in the laboratory. Experiments have been conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe/Fe(3)C (iron/iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon (PBC), powder carbon steel and ball ceramic in the ion-sorption columns as a cleaning process. The PBC modified is a satisfactory and practical sorbent for trace elements (arsenite and chromate) dissolved in water.
Resumo:
Inorganic elements analyses of Carapicuiba lake reveal that As, Cr, Pb and Mn are above the recommended drinking water standards. The mean total concentrations of toxic elements in surface water decrease in the order Mn > Cr > Pb > As. At elevated concentrations, toxic elements like Cr can accumulate in soils and enter the food chain, leading to serious health hazards and threatening the long-term sustainability of the local ecosystem. Absorbing materials has often been used to improve water quality. In this investigation three types of material were studied: the natural zeolite (mordenite); synthetic goethite and the powdered block carbon modified. The adsorption of Pb(2+) and Mn(2+) onto natural zeolite as a function of their concentrations was studied at 24 degrees C by varying the metal concentration from 100 to 400 mg L(-1) while keeping all other parameters constant. The low-cost zeolites removed Pb from water without any pretreatment at pH values <6. The maximum adsorption attained was as follows: Pb(2+) 78.7% and Mn(2+) 19.6%. The modified powdered block carbon effectively removed As(V) and Cr(VI) while goethite removed more chromate than arsenate in the pH range 5-6. Results of this study will be used to evaluate the application these materials for the treatment of the Carapicuiba lake`s water.
Resumo:
Block copolymers containing isosorbide succinate and L-lactic acid repeating units with different mass compositions were synthesized in two steps: bulk ring-opening copolymerization from L-lactide and poli(isosorbide succinate) (PIS) preoligomer, in the presence of tin(II) 2-ethylhexanoate as catalyst. followed by chain extension in solution by using hexamethylene diisocyanate. Poly(L-lactide) (PLLA) and a chain extension product from PIS were also obtained, for comparison. SEC, (1)H and (13)C NMR, MALDI-TOFMS, WAXD, DSC, TG, and contact angle measurements were used in their characterization. The incorporation of isosorbide succinate into PLLA main backbone had minor effect on the thermal stability and the T(g) of the products. However, it reduced the crystallinity and increased the surface energy in relation to PLLA. Nonwoven mats of the block copolymers and PLLA obtained by electrospinning technique were submitted to fibroblasts 3T3-L1 cell culture. The copolymers presented enhanced cell adhesion and proliferation rate as revealed by MTT assay and SEM images. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper necessary and sufficient conditions for a vector to be the fine structure of a balanced ternary design with block size 3, index 3 and rho(2) = 1 and 2 are determined with one unresolved case.